POJ_2455
每条路只走一次可以通过网络流来保证,而对于让最长的边最小可以通过二分枚举来搞定。
#include<stdio.h> #include<string.h> #include<algorithm> #define MAXD 210 #define MAXM 80010 #define INF 0x3f3f3f3f int N, M, P, first[MAXD], e, next[MAXM], v[MAXM], flow[MAXM], MID; int S, T, d[MAXD], q[MAXD], work[MAXD], tx[MAXM]; struct Edge { int x, y, z; }edge[MAXM]; void add(int x, int y, int z) { v[e] = y, flow[e] = z; next[e] = first[x], first[x] = e ++; } void init() { int i; for(i = 0; i < M; i ++) scanf("%d%d%d", &edge[i].x, &edge[i].y, &edge[i].z), tx[i] = edge[i].z; std::sort(tx, tx + M); } int bfs() { int i, j, rear = 0; memset(d, -1, sizeof(d[0]) * (N + 1)); d[S] = 0, q[rear ++] = S; for(i = 0; i < rear; i ++) for(j = first[q[i]]; j != -1; j = next[j]) if(flow[j] && d[v[j]] == -1) { d[v[j]] = d[q[i]] + 1, q[rear ++] = v[j]; if(v[j] == T) return 1; } return 0; } int dfs(int cur, int a) { if(cur == T) return a; for(int &i = work[cur]; i != -1; i = next[i]) if(flow[i] && d[v[i]] == d[cur] + 1) if(int t = dfs(v[i], std::min(a, flow[i]))) { flow[i] -= t, flow[i ^ 1] += t; return t; } return 0; } int dinic() { int ans = 0, t; while(bfs()) { memcpy(work, first, sizeof(first[0]) * (N + 1)); while(t = dfs(S, INF)) ans += t; } return ans; } void build() { int i; S = 1, T = N; memset(first, -1, sizeof(first[0]) * (N + 1)), e = 0; for(i = 0; i < M; i ++) if(edge[i].z <= MID) add(edge[i].x, edge[i].y, 1), add(edge[i].y, edge[i].x, 1); } void solve() { int i, ans = 0, min = -1, max = M - 1, mid; for(;;) { mid = (min + max + 1) >> 1; MID = tx[mid]; if(mid == max) break; build(); if(dinic() >= P) max = mid; else min = mid; } printf("%d\n", MID); } int main() { while(scanf("%d%d%d", &N, &M, &P) == 3) { init(); solve(); } return 0; }