ZOJ_1760
只要保留S-T所有可能的最短路上的边,然后做最大流即可,题目数据存在f[i][i]!=0的情况,因此如果用floyd预处理的话要注意初始化f[i][i]=0。
#include<stdio.h> #include<string.h> #include<algorithm> #define MAXD 110 #define MAXM 20010 #define INF 0x3f3f3f3f int N, f[MAXD][MAXD], g[MAXD][MAXD], first[MAXD], e, next[MAXM], v[MAXM], flow[MAXM]; int d[MAXD], q[MAXD], work[MAXD], S, T; void init() { int i, j, k; for(i = 1; i <= N; i ++) for(j = 1; j <= N; j ++) scanf("%d", &g[i][j]), f[i][j] = g[i][j] == -1 ? INF : g[i][j]; for(i = 1; i <= N; i ++) f[i][i] = 0; for(k = 1; k <= N; k ++) for(i = 1; i <= N; i ++) for(j = 1; j <= N; j ++) f[i][j] = std::min(f[i][j], f[i][k] + f[k][j]); } void add(int x, int y, int z) { flow[e] = z, v[e] = y; next[e] = first[x], first[x] = e ++; } int bfs() { int i, j, rear = 0; memset(d, -1, sizeof(d)); d[S] = 0, q[rear ++] = S; for(i = 0; i < rear; i ++) for(j = first[q[i]]; j != -1; j = next[j]) if(flow[j] && d[v[j]] == -1) { d[v[j]] = d[q[i]] + 1, q[rear ++] = v[j]; if(v[j] == T) return 1; } return 0; } int dfs(int cur, int a) { if(cur == T) return a; int t; for(int &i = work[cur]; i != -1; i = next[i]) if(flow[i] && d[v[i]] == d[cur] + 1) if(t = dfs(v[i], a < flow[i] ? a : flow[i])) { flow[i] -= t, flow[i ^ 1] += t; return t; } return 0; } int dinic() { int ans = 0, t; while(bfs()) { memcpy(work, first, sizeof(first)); while(t = dfs(S, INF)) ans += t; } return ans; } void solve() { int i, j, k; scanf("%d%d", &S, &T); ++ S, ++ T; if(S == T) { printf("inf\n"); return ; } if(f[S][T] == INF) { printf("0\n"); return ; } memset(first, -1, sizeof(first)); e = 0; for(i = 1; i <= N; i ++) for(j = 1; j <= N; j ++) if(i != j && g[i][j] != -1) { if(f[S][i] + g[i][j] + f[j][T] == f[S][T]) add(i, j, 1), add(j, i, 0); } printf("%d\n", dinic()); } int main() { while(scanf("%d", &N) == 1) { init(); solve(); } return 0; }