SPOJ_2916
这个题目需要分情况讨论一下,如果y1<x2,那么就是前面区间的一个后缀,加上后面区间的一个前缀,再加上中间的部分,如果y1>=x2,则根据位置的不同又可以另分三种情况,逐一讨论并更新最优解即可。
分析之后就发现,在线段树的基础上写两个查询函数即可,一个就是和SPOJ_1716的GSS1那样功能的函数(在我的程序里面对应的是query这个函数),另一个是可以求一个区间最大的前缀和或者后缀和的函数(在我的程序里面对应的是Search这个函数)。
#include<stdio.h> #include<string.h> #define INF 0x3f3f3f3f #define MAXD 10010 int N, A[MAXD], a[MAXD], mc[4 * MAXD], lc[4 * MAXD], rc[4 * MAXD]; int Max(int x, int y) { return x > y ? x : y; } void update(int cur, int x, int y) { int mid = (x + y) >> 1, ls = cur << 1, rs = cur << 1 | 1; mc[cur] = Max(mc[ls], mc[rs]); mc[cur] = Max(mc[cur], rc[ls] + lc[rs]); lc[cur] = Max(lc[ls], A[mid] - A[x - 1] + lc[rs]); rc[cur] = Max(rc[rs], A[y] - A[mid] + rc[ls]); } void build(int cur, int x, int y) { int mid = (x + y) >> 1, ls = cur << 1, rs = cur << 1 | 1; if(x == y) { mc[cur] = lc[cur] = rc[cur] = a[x]; return ; } build(ls, x, mid); build(rs, mid + 1, y); update(cur, x, y); } int query(int cur, int x, int y, int s, int t, int flag, int &ans) { int mid = (x + y) >> 1, ls = cur << 1, rs = cur << 1 | 1; if(x >= s && y <= t) { ans = Max(ans, mc[cur]); if(flag == 0) return lc[cur]; else return rc[cur]; } if(mid >= t) return query(ls, x, mid, s, t, 0, ans); else if(mid + 1 <= s) return query(rs, mid + 1, y, s, t, 1, ans); int ln, rn; ln = query(ls, x, mid, s, t, 1, ans); rn = query(rs, mid + 1, y, s, t, 0, ans); ans = Max(ans, ln + rn); if(flag == 0) return Max(lc[ls], A[mid] - A[x - 1] + rn); else return Max(rc[rs], A[y] - A[mid] + ln); } void Search(int cur, int x, int y, int s, int t, int flag, int &ans) { int mid = (x + y) >> 1, ls = cur << 1, rs = cur << 1 | 1; if(x >= s && y <= t) { if(flag == 0) ans = Max(ans, A[x - 1] - A[s - 1] + lc[cur]); else ans = Max(ans, A[t] - A[y] + rc[cur]); return ; } if(mid >= s) Search(ls, x, mid, s, t, flag, ans); if(mid + 1 <= t) Search(rs, mid + 1, y, s, t, flag, ans); } void init() { int i, j, k; scanf("%d", &N); A[0] = 0; for(i = 1; i <= N; i ++) { scanf("%d", &a[i]); A[i] = A[i - 1] + a[i]; } build(1, 1, N); } void solve() { int i, q, ans, t1, t2, x1, y1, x2, y2; scanf("%d", &q); for(i = 0; i < q; i ++) { scanf("%d%d%d%d", &x1, &y1, &x2, &y2); if(y1 < x2) { t1 = t2 = -INF; Search(1, 1, N, x1, y1, 1, t1); Search(1, 1, N, x2, y2, 0, t2); printf("%d\n", t1 + t2 + A[x2 - 1] - A[y1]); } else { ans = -INF; query(1, 1, N, x2, y1, 0, ans); t1 = t2 = -INF; Search(1, 1, N, x1, y1, 1, t1); Search(1, 1, N, y1, y2, 0, t2); ans = Max(ans, t1 + t2 - a[y1]); t1 = t2 = -INF; Search(1, 1, N, x1, x2, 1, t1); Search(1, 1, N, x2, y2, 0, t2); ans = Max(ans, t1 + t2 - a[x2]); printf("%d\n", ans); } } } int main() { int t; scanf("%d", &t); while(t --) { init(); solve(); } return 0; }