HDU_1225
拓展一下求K次覆盖的矩形的并的话就是UVA_11983那个题了。感觉上用线段树处理矩形的并,首先就是要标记出哪些区间被覆盖了,其次就是要用类似dp的思想,用cover[i][j]表示在线段树上的节点i表示的范围内,覆盖了j次的线段总长度,同时cover[i][K]表示的是覆盖了K次及大于K次的线段的总长度,然后依据左右儿子的状态来更新cover[i][j]的状态。
#include<stdio.h> #include<string.h> #include<stdlib.h> #include<math.h> #define MAXD 2010 #define zero 1e-8 int N, M, cnt[4 * MAXD], K = 2; double ty[MAXD], cover[4 * MAXD][3]; struct Seg { double x, y1, y2; int col; }seg[MAXD]; int cmpy(const void *_p, const void *_q) { double *p = (double *)_p, *q = (double *)_q; return *p < *q ? -1 : 1; } int cmps(const void *_p, const void *_q) { Seg *p = (Seg *)_p, *q = (Seg *)_q; return p->x < q->x ? -1 : 1; } int dcmp(double x) { return fabs(x) < zero ? 0 : (x < 0 ? -1 : 1); } void build(int cur, int x, int y) { int mid = (x + y) >> 1, ls = cur << 1, rs = (cur << 1) | 1; memset(cover[cur], 0, sizeof(cover[cur])); cover[cur][0] = ty[y + 1] - ty[x]; cnt[cur] = 0; if(x == y) return ; build(ls, x, mid); build(rs, mid + 1, y); } void init() { int i, j, k; double x1, x2, y1, y2; scanf("%d", &N); for(i = 0; i < N; i ++) { j = i << 1, k = (i << 1) | 1; scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2); seg[j].x = x1, seg[k].x = x2; seg[j].y1 = seg[k].y1 = y1, seg[j].y2 = seg[k].y2 = y2; seg[j].col = 1, seg[k].col = -1; ty[j] = y1, ty[k] = y2; } qsort(ty, N << 1, sizeof(ty[0]), cmpy); M = (N << 1) - 1; build(1, 0, M - 1); } void update(int cur, int x, int y) { int ls = cur << 1, rs = (cur << 1) | 1; memset(cover[cur], 0, sizeof(cover[cur])); if(cnt[cur] >= K) cover[cur][K] = ty[y + 1] - ty[x]; else if(x == y) cover[cur][cnt[cur]] = ty[y + 1] - ty[x]; else { int i; for(i = cnt[cur]; i <= K; i ++) cover[cur][i] += cover[ls][i - cnt[cur]] + cover[rs][i - cnt[cur]]; for(i = K - cnt[cur] + 1; i <= K; i ++) cover[cur][K] += cover[ls][i] + cover[rs][i]; } } void refresh(int cur, int x, int y, int s, int t, int c) { int mid = (x + y) >> 1, ls = cur << 1, rs = (cur << 1) | 1; if(x >= s && y <= t) { cnt[cur] += c; update(cur, x, y); return ; } if(mid >= s) refresh(ls, x, mid, s, t, c); if(mid + 1 <= t) refresh(rs, mid + 1, y, s, t, c); update(cur, x, y); } int BS(double x) { int min = 0, max = M + 1, mid; for(;;) { mid = (min + max) >> 1; if(mid == min) break; if(dcmp(ty[mid] - x) <= 0) min = mid; else max = mid; } return mid; } void solve() { int i, j, k; double ans = 0; qsort(seg, N << 1, sizeof(seg[0]), cmps); seg[N << 1].x = seg[(N << 1) - 1].x; for(i = 0; i < (N << 1); i ++) { j = BS(seg[i].y1), k = BS(seg[i].y2); if(j < k) refresh(1, 0, M - 1, j, k - 1, seg[i].col); ans += cover[1][K] * (seg[i + 1].x - seg[i].x); } printf("%.2f\n", ans); } int main() { int t; scanf("%d", &t); while(t --) { init(); solve(); } return 0; }