HDU_3437
比较容易证明,x应该取区间的中位数,于是问题就转化成了求[l,r]区间内大小排第(l+r)/2+1的数,然后将和计算出来即可。
求区间的中位数可以用划分树来实现,但是和却不可以在求得中位数后再利用原序列直接计算,因为原区间的元素是无序的,我们没办法进行作差求和。联想作差求和的条件,即要明确哪些数是比中位数大,哪些数比中位数小,而划分树恰好左子树的元素总是比右子树小,于是如果中位数在左子树中,我们自然可以将右子树中[l,r]区间内的数与中位数的差先求出来,如果中位数在右子树中,我们就可以先将左子树中[l,r]区间内的数与中位数的差先求出来,求和的过程可以在求得中位数的具体值后回溯的时候实现。为了实现快速求和,我们在建划分树时可以额外建一个数组A[d][i],表示在第d层的某节点上第i个元素及之前的元素之和。
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define MAXK 20
#define MAXD 100010
int N, M, sa[MAXD], a[MAXD], rank[MAXK][MAXD], h[MAXK][MAXD];
long long int A[MAXK][MAXD], ans;
int cmp(const void *_p, const void *_q)
{
int *p = (int *)_p, *q = (int *)_q;
if(a[*p] == a[*q])
return *p - *q;
return a[*p] - a[*q];
}
void init()
{
int i, j, k;
scanf("%d", &N);
for(i = 1; i <= N; i ++)
{
scanf("%d", &a[i]);
sa[i] = i;
}
}
void build(int lx, int rx, int d)
{
if(lx == rx)
{
A[d][lx] = a[sa[rank[d][lx]]];
return ;
}
int i, j, k, p = 0, mid = (lx + rx) / 2;
for(i = lx; i <= rx; i ++)
{
if(rank[d][i] <= mid)
rank[d + 1][lx + p ++] = rank[d][i];
else
rank[d + 1][mid + i - lx + 1 - p] = rank[d][i];
h[d][i] = p;
A[d][i] = a[sa[rank[d][i]]] + (i == lx ? 0 : A[d][i - 1]);
}
build(lx, mid, d + 1);
build(mid + 1, rx, d + 1);
}
int search(int lx, int rx, int x, int y, int k, int d)
{
if(lx == rx)
return sa[rank[d][lx]];
int j, n, m, mid = (lx + rx) / 2, tx, ty;
n = h[d][y], m = x == lx ? 0 : h[d][x - 1];
if(n - m >= k)
{
j = search(lx, mid, lx + m, lx + n - 1, k, d + 1);
tx = mid + 1 + x - lx - m, ty = mid + 1 + y - lx - n;
if(tx <= ty)
ans += A[d + 1][ty] - (tx == mid + 1 ? 0 : A[d + 1][tx - 1]) - (long long int)(ty - tx + 1) * a[j];
}
else
{
j = search(mid + 1, rx, mid + 1 + x - lx - m, mid + 1 + y - lx - n, k - n + m, d + 1);
tx = lx + m, ty = lx + n - 1;
if(tx <= ty)
ans += (long long int)(ty - tx + 1) * a[j] - A[d + 1][ty] + (tx == lx ? 0 : A[d + 1][tx - 1]);
}
return j;
}
void solve()
{
int i, j, k, x, y;
qsort(sa + 1, N, sizeof(sa[0]), cmp);
for(i = 1; i <= N; i ++)
rank[0][sa[i]] = i;
build(1, N, 0);
scanf("%d", &M);
for(i = 0; i < M; i ++)
{
scanf("%d%d", &x, &y);
++ x, ++ y;
k = (y - x) / 2 + 1;
ans = 0;
search(1, N, x, y, k, 0);
printf("%I64d\n", ans);
}
}
int main()
{
int t, tt;
scanf("%d", &t);
for(tt = 0; tt < t; tt ++)
{
init();
printf("Case #%d:\n", tt + 1);
solve();
printf("\n");
}
return 0;
}