二项式系数 BINOMIAL COEFFICIENTS

基本恒等式 BASIC IDENTITIES

符号 \({\dbinom {n}{k}}\) 就是二次项系数,将此符号读作 “\(n\) 选取 \(k\)”。这种常用说法来源于它的组合解释——从一个有 \(n\) 个元素的集合选取 \(k\) 个元素做成子集的方法数。

嗯,显然有 \({\dbinom {n}{k}}=\dfrac{n(n-1)...(n-k+1)}{k(k-1)...(1)}\),我们称 \(n\)上指标,称 \(k\)下指标

我们记 \(n(n-1)...(n-k+1)=n^{\underline k}\),那么 \({\dbinom {n}{k}}=\dfrac{n^{\underline k}}{k!}=\dfrac{n!}{k!(n-k)!}\)

  • 对称恒等式:\({\dbinom {n}{k}}={\dbinom {n}{n-k}}\) (5.4)

  • 吸收恒等式:\({\dbinom {r}{k}}=\dfrac{r}{k}{\dbinom {r-1}{k-1}}\) (5.5)

  • 吸收恒等式:\(k{\dbinom {r}{k}}=r{\dbinom {r-1}{k-1}}\) (5.6)

  • 吸收恒等式:\((r-k){\dbinom {r}{k}}=r{\dbinom {r-1}{k}}\) (5.7)

    我们可以两次应用对称性 (5.4) 和 (5.6),从而推出 (5.7)。

    \((r-k){\dbinom {r}{k}}=(r-k){\dbinom {r}{r-k}=r{\dbinom {r-1}{r-k-1}}}=r{\dbinom {r-1}{k}}\)

  • 加法公式:\({\dbinom {r}{k}}={\dbinom {r-1}{k}+\dbinom {r-1}{k-1}}\) (5.8)

    理解性证明:\(r\) 个数选 \(k\) 个数,若第 \(r\) 个数不选,就是前 \(r-1\) 个数选 \(k\) 个数。若第 \(r\) 个数选,就是前 \(r-1\) 个数选 \(k-1\) 个数。

    当然了,我们可以把 (5.7) 和 (5.7) 相加起来推导 (5.8):\((r-k){\dbinom {r}{k}}+k{\dbinom {r}{k}}=r{\dbinom {r-1}{k}}+r{\dbinom {r-1}{k-1}}\) 化简就得到 (5.8)。

  • 由 (5.8) 可以推导:

\[\dbinom {5}{3}=\dbinom {4}{3}+\dbinom {4}{2}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\dbinom {4}{3}+\dbinom {3}{2}+\dbinom {3}{1}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\dbinom {4}{3}+\dbinom {3}{2}+\dbinom {2}{1}+\dbinom {2}{0}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\dbinom {4}{3}+\dbinom {3}{2}+\dbinom {2}{1}+\dbinom {1}{0}+\dbinom {1}{-1}\]

由于 \(\dbinom {1}{-1}=0\),这一项就消失了,这个方法可以推导出下面的一般公式:\(\dbinom {r}{0}+\dbinom {r+1}{1}+...+\dbinom {r+n}{n}=\dbinom {r+n+1}{n}\)。(5.9)

  • 我们还可以对 \(\dbinom {5}{3}\) 这样变形:

\[\dbinom {5}{3}=\dbinom {4}{3}+\dbinom {4}{2}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\dbinom {3}{3}+\dbinom {3}{2}+\dbinom {4}{2}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\dbinom {2}{3}+\dbinom {2}{2}+\dbinom {3}{2}+\dbinom {4}{2}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\dbinom {1}{3}+\dbinom {1}{2}+\dbinom {2}{2}+\dbinom {3}{2}+\dbinom {4}{2}\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\dbinom {0}{3}+\dbinom {0}{2}+\dbinom {1}{2}+\dbinom {2}{2}+\dbinom {3}{2}+\dbinom {4}{2}\]

我们可以把 \(\dbinom {0}{3}\) 等价变为 \(\dbinom {0}{2}\)。则可以联想到一般的形式:\(\dbinom {0}{m}+\dbinom {1}{m}+...+\dbinom {n}{m}=\dbinom {n+1}{m+1}\)

image

posted @ 2023-07-05 09:18  Otue  阅读(20)  评论(0编辑  收藏  举报