上次(http://www.cnblogs.com/stGeekpower/p/3457746.html)主要是对应于javadoc写了下LexicalizedParser类main函数的功能,这次看下main函数的具体处理过程。main函数大概350行左右,主要完成的工作是:初始化变量(各种标志位)、解析传入的各种参数、根据传入的选项参数分步骤完成各种工作。
根据选项来做的工作按顺序主要包括:分词(必须最先处理)、初始化LexicalizedParser(读入或训练)、编码设置、测试、保存(如果需要的话)、解析输出结果。
具体解析的部分:对句子解析是通过LexicalizedParser对象生成的ParserQuery类的parse函数来完成,对文件的解析由ParseFiles类的parseFiles函数(最终也是调用ParserQuery类)完成。
一、初始化变量
这部分主要处理申明一些标志位,以及构建解析器需要的变量;
boolean train = false;//train or parse boolean saveToSerializedFile = false;//是否序列化存储至文件 boolean saveToTextFile = false;//是否存储至文本文件 String serializedInputFileOrUrl = null;//序列化输入文件或者url String textInputFileOrUrl = null;//文本输入文件或者url String serializedOutputFileOrUrl = null;//序列化输出文件或者url String textOutputFileOrUrl = null;//文本输入文件或者url String treebankPath = null;//语法树路径 Treebank testTreebank = null; Treebank tuneTreebank = null; String testPath = null; FileFilter testFilter = null; String tunePath = null; FileFilter tuneFilter = null; FileFilter trainFilter = null;//训练过滤范围 String secondaryTreebankPath = null; double secondaryTreebankWeight = 1.0; FileFilter secondaryTrainFilter = null; // variables needed to process the files to be parsed TokenizerFactory<? extends HasWord> tokenizerFactory = null; //分词工厂 String tokenizerOptions = null;//分词所需参数 String tokenizerFactoryClass = null;//分词所用类 String tokenizerMethod = null;//分词所用方法 boolean tokenized = false; // whether or not the input file has already been tokenized Function<List<HasWord>, List<HasWord>> escaper = null; //转义 String tagDelimiter = null; //分隔符 String sentenceDelimiter = null; String elementDelimiter = null;
二、解析传入的各种参数
这里处理用户传入的各种选项参数,存入在一种申明的变量中;
int argIndex = 0; if (args.length < 1) {//参数数量为0,错误返回 System.err.println("Basic usage (see Javadoc for more): java edu.stanford.nlp.parser.lexparser" + ".LexicalizedParser parserFileOrUrl filename*"); return; } Options op = new Options(); //处理参数的对象 List<String> optionArgs = new ArrayList<String>(); String encoding = null; // while loop through option arguments,循环处理选项参数 while (argIndex < args.length && args[argIndex].charAt(0) == '-') { if (args[argIndex].equalsIgnoreCase("-train") || args[argIndex].equalsIgnoreCase("-trainTreebank")) {//判断是否执行训练功能 train = true; //处理训练时传入的参数信息,得到文件路径和过滤范围存至treebankDescription Pair<String, FileFilter> treebankDescription = ArgUtils.getTreebankDescription(args, argIndex, "-test"); argIndex = argIndex + ArgUtils.numSubArgs(args, argIndex) + 1; treebankPath = treebankDescription.first(); trainFilter = treebankDescription.second(); } else if (args[argIndex].equalsIgnoreCase("-train2")) { // TODO: we could use the fully expressive -train options if // we add some mechanism for returning leftover options from // ArgUtils.getTreebankDescription // train = true; // cdm july 2005: should require -train for this int numSubArgs = ArgUtils.numSubArgs(args, argIndex); argIndex++; if (numSubArgs < 2) { throw new RuntimeException("Error: -train2 <treebankPath> [<ranges>] <weight>."); } secondaryTreebankPath = args[argIndex++]; secondaryTrainFilter = (numSubArgs == 3) ? new NumberRangesFileFilter(args[argIndex++], true) : null; secondaryTreebankWeight = Double.parseDouble(args[argIndex++]); } else if (args[argIndex].equalsIgnoreCase("-tLPP") && (argIndex + 1 < args.length)) { // 当使用除英文外的语言或者English Penn Treebank之外的Treebank时候需要指定TreebankLangParserParams, // 该选项必须出现在其他的与语言相关的选项之前。不同的语言有不同的参数 try { op.tlpParams = (TreebankLangParserParams) Class.forName(args[argIndex + 1]).newInstance(); } catch (ClassNotFoundException e) { System.err.println("Class not found: " + args[argIndex + 1]); throw new RuntimeException(e); } catch (InstantiationException e) { System.err.println("Couldn't instantiate: " + args[argIndex + 1] + ": " + e.toString()); throw new RuntimeException(e); } catch (IllegalAccessException e) { System.err.println("Illegal access" + e); throw new RuntimeException(e); } argIndex += 2; } else if (args[argIndex].equalsIgnoreCase("-encoding")) {//编码 // sets encoding for TreebankLangParserParams // redone later to override any serialized parser one read in encoding = args[argIndex + 1]; op.tlpParams.setInputEncoding(encoding); op.tlpParams.setOutputEncoding(encoding); argIndex += 2; } else if (args[argIndex].equalsIgnoreCase("-tokenized")) {//是否已经分词 tokenized = true; argIndex += 1; } else if (args[argIndex].equalsIgnoreCase("-escaper")) { try { escaper = ReflectionLoading.loadByReflection(args[argIndex + 1]); } catch (Exception e) { System.err.println("Couldn't instantiate escaper " + args[argIndex + 1] + ": " + e); } argIndex += 2; } else if (args[argIndex].equalsIgnoreCase("-tokenizerOptions")) {//指定TokenizerFactory类完成tokenization 所需要的参数信息 tokenizerOptions = args[argIndex + 1]; argIndex += 2; } else if (args[argIndex].equalsIgnoreCase("-tokenizerFactory")) {//指定一个TokenizerFactory类来完成分词 tokenizerFactoryClass = args[argIndex + 1]; argIndex += 2; } else if (args[argIndex].equalsIgnoreCase("-tokenizerMethod")) {//分词方法 tokenizerMethod = args[argIndex + 1]; argIndex += 2; } else if (args[argIndex].equalsIgnoreCase("-sentences")) {//指定一个词语来划分句子边界,即分句根据 sentenceDelimiter = args[argIndex + 1]; if (sentenceDelimiter.equalsIgnoreCase("newline")) { sentenceDelimiter = "\n"; } argIndex += 2; } else if (args[argIndex].equalsIgnoreCase("-parseInside")) {//解析的范围,可以是句,几句等等 elementDelimiter = args[argIndex + 1]; argIndex += 2; } else if (args[argIndex].equalsIgnoreCase("-tagSeparator")) {//指明标注符号 tagDelimiter = args[argIndex + 1]; argIndex += 2; } else if (args[argIndex].equalsIgnoreCase("-loadFromSerializedFile") || args[argIndex].equalsIgnoreCase("-model")) { // load the parser from a binary serialized file // the next argument must be the path to the parser file serializedInputFileOrUrl = args[argIndex + 1]; argIndex += 2; } else if (args[argIndex].equalsIgnoreCase("-loadFromTextFile")) { // load the parser from declarative text file // the next argument must be the path to the parser file textInputFileOrUrl = args[argIndex + 1]; argIndex += 2; } else if (args[argIndex].equalsIgnoreCase("-saveToSerializedFile")) { saveToSerializedFile = true; if (ArgUtils.numSubArgs(args, argIndex) < 1) { System.err.println("Missing path: -saveToSerialized filename"); } else { serializedOutputFileOrUrl = args[argIndex + 1]; } argIndex += 2; } else if (args[argIndex].equalsIgnoreCase("-saveToTextFile")) { // save the parser to declarative text file saveToTextFile = true; textOutputFileOrUrl = args[argIndex + 1]; argIndex += 2; } else if (args[argIndex].equalsIgnoreCase("-saveTrainTrees")) { // save the training trees to a binary file op.trainOptions.trainTreeFile = args[argIndex + 1]; argIndex += 2; } else if (args[argIndex].equalsIgnoreCase("-treebank") || args[argIndex].equalsIgnoreCase("-testTreebank") || args[argIndex].equalsIgnoreCase("-test")) {//训练并测试,测试所需的参数 Pair<String, FileFilter> treebankDescription = ArgUtils.getTreebankDescription(args, argIndex, "-test"); argIndex = argIndex + ArgUtils.numSubArgs(args, argIndex) + 1; testPath = treebankDescription.first(); testFilter = treebankDescription.second(); } else if (args[argIndex].equalsIgnoreCase("-tune")) { Pair<String, FileFilter> treebankDescription = ArgUtils.getTreebankDescription(args, argIndex, "-tune"); argIndex = argIndex + ArgUtils.numSubArgs(args, argIndex) + 1; tunePath = treebankDescription.first(); tuneFilter = treebankDescription.second(); } else { int oldIndex = argIndex; argIndex = op.setOptionOrWarn(args, argIndex); for (int i = oldIndex; i < argIndex; i++) { optionArgs.add(args[i]); } } } // end while loop through arguments
三、分词处理
句法分析的前提是句子已经被正确分词,这里即完成分词工作,当然分词我们可以选用自己合适的分词器;
// set up tokenizerFactory with options if provided if (tokenizerFactoryClass != null || tokenizerOptions != null) { try {//分词工厂类、分词方法由参数指定,若不指定,默认PTBTokenizer if (tokenizerFactoryClass != null) { Class<TokenizerFactory<? extends HasWord>> clazz = ErasureUtils.uncheckedCast(Class.forName (tokenizerFactoryClass)); Method factoryMethod; if (tokenizerOptions != null) { factoryMethod = clazz.getMethod(tokenizerMethod != null ? tokenizerMethod : "newWordTokenizerFactory", String.class); tokenizerFactory = ErasureUtils.uncheckedCast(factoryMethod.invoke(null, tokenizerOptions)); } else { factoryMethod = clazz.getMethod(tokenizerMethod != null ? tokenizerMethod : "newTokenizerFactory"); tokenizerFactory = ErasureUtils.uncheckedCast(factoryMethod.invoke(null)); } } else { // have options but no tokenizer factory; default to PTB tokenizerFactory = PTBTokenizer.PTBTokenizerFactory.newWordTokenizerFactory(tokenizerOptions); } } catch (IllegalAccessException e) { System.err.println("Couldn't instantiate TokenizerFactory " + tokenizerFactoryClass + " with options " + "" + tokenizerOptions); throw new RuntimeException(e); } catch (NoSuchMethodException e) { System.err.println("Couldn't instantiate TokenizerFactory " + tokenizerFactoryClass + " with options " + "" + tokenizerOptions); throw new RuntimeException(e); } catch (ClassNotFoundException e) { System.err.println("Couldn't instantiate TokenizerFactory " + tokenizerFactoryClass + " with options " + "" + tokenizerOptions); throw new RuntimeException(e); } catch (InvocationTargetException e) { System.err.println("Couldn't instantiate TokenizerFactory " + tokenizerFactoryClass + " with options " + "" + tokenizerOptions); throw new RuntimeException(e); }
四、初始化LexicalizedParser
初始化LexicalizedParser有三种方式,分别是:根据数据训练一个,从文本文件读入,从序列化文件读入;
if (tuneFilter != null || tunePath != null) {//处理tune treebank if (tunePath == null) { if (treebankPath == null) { throw new RuntimeException("No tune treebank path specified..."); } else { System.err.println("No tune treebank path specified. Using train path: \"" + treebankPath + '\"'); tunePath = treebankPath; } } tuneTreebank = op.tlpParams.testMemoryTreebank(); tuneTreebank.loadPath(tunePath, tuneFilter); } if (!train && op.testOptions.verbose) { StringUtils.printErrInvocationString("LexicalizedParser", args); } edu.stanford.nlp.parser.lexparser.LexicalizedParser lp; // always initialized in next if-then-else block if (train) { StringUtils.printErrInvocationString("LexicalizedParser", args); // so we train a parser using the treebank GrammarCompactor compactor = null; if (op.trainOptions.compactGrammar() == 3) { compactor = new ExactGrammarCompactor(op, false, false); } Treebank trainTreebank = makeTreebank(treebankPath, op, trainFilter); Treebank secondaryTrainTreebank = null; if (secondaryTreebankPath != null) { secondaryTrainTreebank = makeSecondaryTreebank(secondaryTreebankPath, op, secondaryTrainFilter); } List<List<TaggedWord>> extraTaggedWords = null; if (op.trainOptions.taggedFiles != null) { extraTaggedWords = new ArrayList<List<TaggedWord>>(); List<TaggedFileRecord> fileRecords = TaggedFileRecord.createRecords(new Properties(), op.trainOptions.taggedFiles); for (TaggedFileRecord record : fileRecords) { for (List<TaggedWord> sentence : record.reader()) { extraTaggedWords.add(sentence); } } } //执行训练方法时对lp的初始化,根据标注数据训练出lp lp = getParserFromTreebank(trainTreebank, secondaryTrainTreebank, secondaryTreebankWeight, compactor, op, tuneTreebank, extraTaggedWords); } else if (textInputFileOrUrl != null) { // so we load the parser from a text grammar file,直接从文本文件中读入lp lp = getParserFromTextFile(textInputFileOrUrl, op); } else { // so we load a serialized parser,从序列化保存的文件中读入lp if (serializedInputFileOrUrl == null && argIndex < args.length) { // the next argument must be the path to the serialized parser serializedInputFileOrUrl = args[argIndex]; argIndex++; } if (serializedInputFileOrUrl == null) { System.err.println("No grammar specified, exiting..."); return; } String[] extraArgs = new String[optionArgs.size()]; extraArgs = optionArgs.toArray(extraArgs); try { lp = loadModel(serializedInputFileOrUrl, op, extraArgs); op = lp.op; } catch (IllegalArgumentException e) { System.err.println("Error loading parser, exiting..."); throw e; } }
五、控制编码
// the following has to go after reading parser to make sure // op and tlpParams are the same for train and test // THIS IS BUTT UGLY BUT IT STOPS USER SPECIFIED ENCODING BEING // OVERWRITTEN BY ONE SPECIFIED IN SERIALIZED PARSER if (encoding != null) { op.tlpParams.setInputEncoding(encoding); op.tlpParams.setOutputEncoding(encoding); }
六、测试数据设置
if (testFilter != null || testPath != null) { if (testPath == null) { if (treebankPath == null) { throw new RuntimeException("No test treebank path specified..."); } else { System.err.println("No test treebank path specified. Using train path: \"" + treebankPath + '\"'); testPath = treebankPath; } } testTreebank = op.tlpParams.testMemoryTreebank(); testTreebank.loadPath(testPath, testFilter); }
七、需要的话将训练生成的解析器保存
op.trainOptions.sisterSplitters = Generics.newHashSet(Arrays.asList(op.tlpParams.sisterSplitters())); // at this point we should be sure that op.tlpParams is // set appropriately (from command line, or from grammar file), // and will never change again. -- Roger // Now what do we do with the parser we've made if (saveToTextFile) { // save the parser to textGrammar format if (textOutputFileOrUrl != null) { lp.saveParserToTextFile(textOutputFileOrUrl); } else { System.err.println("Usage: must specify a text grammar output path"); } } if (saveToSerializedFile) { if (serializedOutputFileOrUrl != null) { lp.saveParserToSerialized(serializedOutputFileOrUrl); } else if (textOutputFileOrUrl == null && testTreebank == null) { // no saving/parsing request has been specified System.err.println("usage: " + "java edu.stanford.nlp.parser.lexparser.LexicalizedParser " + "-train " + "trainFilesPath [fileRange] -saveToSerializedFile serializedParserFilename"); } }
八、训练或者指定输入参数时,输出一些信息
if (op.testOptions.verbose || train) { // Tell the user a little or a lot about what we have made // get lexicon size separately as it may have its own prints in it.... String lexNumRules = lp.lex != null ? Integer.toString(lp.lex.numRules()) : ""; System.err.println("Grammar\tStates\tTags\tWords\tUnaryR\tBinaryR\tTaggings"); System.err.println("Grammar\t" + lp.stateIndex.size() + '\t' + lp.tagIndex.size() + '\t' + lp.wordIndex.size() + '\t' + (lp.ug != null ? lp.ug.numRules() : "") + '\t' + (lp.bg != null ? lp.bg.numRules() : "") + '\t' + lexNumRules); System.err.println("ParserPack is " + op.tlpParams.getClass().getName()); System.err.println("Lexicon is " + lp.lex.getClass().getName()); if (op.testOptions.verbose) { System.err.println("Tags are: " + lp.tagIndex); // System.err.println("States are: " + lp.pd.stateIndex); // This is too verbose. It was already // printed out by the below printOptions command if the flag -printStates is given (at training time)! } printOptions(false, op); }
九、执行解析工作
可以以句子的方式解析,也可用ParseFiles类的方法来解析多个文件。
if (testTreebank != null) { // test parser on treebank EvaluateTreebank evaluator = new EvaluateTreebank(lp); evaluator.testOnTreebank(testTreebank); } else if (argIndex >= args.length) { // no more arguments, so we just parse our own test sentence PrintWriter pwOut = op.tlpParams.pw(); PrintWriter pwErr = op.tlpParams.pw(System.err); ParserQuery pq = lp.parserQuery(); if (pq.parse(op.tlpParams.defaultTestSentence())) {//解析 lp.getTreePrint().printTree(pq.getBestParse(), pwOut); } else { pwErr.println("Error. Can't parse test sentence: " + op.tlpParams.defaultTestSentence()); } } else { // We parse filenames given by the remaining arguments,解析 ParseFiles.parseFiles(args, argIndex, tokenized, tokenizerFactory, elementDelimiter, sentenceDelimiter, escaper, tagDelimiter, op, lp.getTreePrint(), lp); }
码农改变世界!