688. Knight Probability in Chessboard

 1 /*
 2     dp[k][i][j]代表从坐标为(i,j)的地方走k步,还在棋盘内的概率
 3     状态方程:dp[k][i][j] = dp[k-1][x][y]*(本次走的8种情况中不会出局的数量)/8
 4     若情况1,2,3不会出局,那么
 5     for(i= (1,2,3)):
 6         dp[k][i][j] += dp[k-1][x][y]*1/8
 7      */
 8     public double knightProbability(int N, int K, int r, int c) {
 9         int[][] location = new int[][]{{-2,-1},{-1,-2},{1,-2},{2,-1},{-2,1},{-1,2},{1,2},{2,1}};
10         double[][][] dp = new double[K+1][N][N];
11         //初始值,当一步也不走时,概率是1
12         for(int i = 0;i < N;i++)
13         {
14             Arrays.fill(dp[0][i],1);
15         }
16         return move(N,K,location,dp,r,c);
17     }
18     boolean check(int x,int y,int n)
19     {
20         if (x>=0 && y>=0 && x<n && y <n)
21             return true;
22         else return false;
23     }
24     double move(int N, int K,int[][] location,double[][][] dp,int r,int c)
25     {
26         for (int k = 1;k <= K;k++)
27         {
28             for (int i = 0; i < N; i++) {
29                 for (int j = 0; j < N; j++) {
30                     for (int[] a :
31                             location) {
32                         int x = i + a[0];
33                         int y = j + a[1];
34                         if (check(x,y,N))
35                             //这里第一次把dp[k-1][x][y]写成了dp[k-1][i][j]
36                         //这里的思想其实是,从当前走k步不出局的概率是从下一步(8种走法)走k-1步的概率相加
37                             dp[k][i][j] += dp[k-1][x][y]/8;
38                     }
39                 }
40             }
41         }
42         return dp[K][r][c];
43     }

 

posted @ 2017-11-05 16:18  stAr_1  阅读(288)  评论(0编辑  收藏  举报