[leetcode72]Edit Distance

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

 

 

 
/*和712题Minimum ASCII Delete Sum for Two Strings基本一模一样,都是调整两个字符串到相等,一看不需要过程只要步数,就是动态规划
    从两个字符串的开头开始比较,一个一个比较,我们用二维数组dp[i][j]代表字符串1前i个字符和字符串2前j个字符调整到相同时,str1所需要调整的步数
       有三种方法可以到达dp[i][j]:
       1.dp[i-1][j] + 1:由于从dp[i-1][j]到dp[i][j]是多考虑了str1的一个字符,但是str2字符数没变,所以要想相同,必须删除str[i],步骤+1
       2.dp[i][j-1] + 1:对应于1,这个是多考虑str2的一个字符,所以str1应该添加上,步骤+1
       3.dp[i-1][j-1] + a,这里是考虑两个str都加了一个,所以str1[i] =str2[j]时,a=0;str1[i] !=str2[j]时,str1[i]应该改成str2[j],a=1
       这三种情况每次比较出最小的来,最后返回dp[str1.length][str2.length](这里字符串下标从1开始,因为我们考虑dp数组的第0行代表str1还啥也没有,第0列代表str2啥也没有)
     */
    public int minDistance(String word1, String word2) {
        int m = word1.length();
        int n = word2.length();
        int[][] dp = new int[m+1][n+1];
        //初始化动态数组,就是第0行数据和第1行数据,注意由于下标从1开始,所以charAt的时候要-1
        for (int i = 1;i < m+1;i++)
            dp[i][0] = dp[i-1][0] + 1;
        for (int i = 1;i < n+1;i++)
            dp[0][i] = dp[0][i-1] + 1;
        for (int i = 1;i < m+1;i++)
        {
            for (int j = 1;j < n+1;j++)
            {
                //先看word1[i]和word2[j]是不是相等,确定a
                int a =(word1.charAt(i-1) == word2.charAt(j-1))? 0 : 1;
                //比较三种情况
                dp[i][j] = Math.min(dp[i-1][j-1]+a,Math.min(dp[i-1][j] + 1,dp[i][j-1] + 1));
            }
        }
        return dp[m][n];

 

posted @ 2017-10-23 22:18  stAr_1  阅读(514)  评论(0编辑  收藏  举报