P2P学习(四)P2P编程实现
一:协议解析
(一)协议格式设计
(二)字段说明
Version(1Byte):版本信息,这里默认0即可
Status(1Byte):协议的状态信息
#define PROTO_LOGIN_REQ 0x01 //登录服务器的请求与响应 #define PROTO_LOGIN_ACK 0x81 #define PROTO_HEARTBEAT_REQ 0x02 //心跳包的请求与响应,防止P2P连接被NAT网关关闭 #define PROTO_HEARTBEAT_ACK 0x82 #define PROTO_CONNECT_REQ 0x11 //连接请求与响应,向服务端发送P2P连接请求----(服务器与本端) #define PROTO_CONNECT_ACK 0x91 #define PROTO_NOTIFY_REQ 0x12 //服务端处理PROTO_CONNECT_REQ请求之后,发送PROTO_NOTIFY_REQ请求给对端----(服务器与对端) #define PROTO_NOTIFY_ACK 0x92 #define PROTO_P2P_CONNECT_REQ 0x13 //对端接收到PROTO_NOTIFY_REQ请求之后,开始与本端建立P2P连接;本端接收到PROTO_P2P_CONNECT_REQ之后,回送PROTO_P2P_CONNECT_ACK给对端,双方状态机变为P2P建立完成,可以进行P2P传输 #define PROTO_P2P_CONNECT_ACK 0x93 #define RPORO_MESSAGE_REQ 0x21 //原始数据到达(是添加了自定义的首部之后的数据)---包含服务端转发和P2P发送!!! #define RPORO_MESSAGE_ACK 0xA1
Length(2Bytes):数据的长度字段 = Message数据的长度 + 数据头部长度
Self ID(4Bytes):本端的ID信息
Other ID(4Bytes):对端的ID信息
Message:存放原始数据
(三)P2P客户端的状态机和协议的状态信息
typedef enum { STATUS_INIT, STATUS_LOGIN, STATUS_HEARTBEAT, STATUS_CONNECT, STATUS_NOTIFY, STATUS_P2P_CONNECT, STATUS_MESSAGE, } STATUS_SET;
(四)客户端流程图
1.本机A默认状态STATUS_INIT,当本机A创建Socket之后,准备与服务器建立连接,状态变为STATUS_LOGIN
2.本机A与服务端通过PROTO_LOGIN_REQ请求建立联系,服务端记录本机的id和地址ip和端口信息,返回PROTO_LOGIN_ACK确认消息给本机
3.本机A收到PROTO_LOGIN_ACK确认消息后,状态变为STATUS_CONNECT,开始为建立p2p连接做准备,发送PROTO_CONNECT_REQ请求给服务器,服务端接收到本A端PROTO_CONNECT_REQ消息后,服务器回送PROTO_CONNECT_ACK确认消息和对端的地址信息给本机A,本机A状态变为STATUS_P2P_CONNECT状态。
4.服务端接收到本A端PROTO_CONNECT_REQ消息后,发送PROTO_NOTIFY_REQ请求(保护本端的地址信息)到对端B。对端B接收到PROTO_NOTIFY_REQ请求后,回送PROTO_NOTIFY_ACK确认消息给服务器,此时对端B状态变为STATUS_P2P_CONNECT。
注意:如果无法建立P2P连接,则双方的状态停留在STATUS_P2P_CONNECT状态,可以通过服务器进行转发。而不需要进行p2p通信!
5.对端状态为STATUS_P2P_CONNECT后,发生PROTO_P2P_CONNECT_REQ请求消息给本机端,打通对端-(NAT端口)-->本机。
6.对端状态为STATUS_P2P_CONNECT后,发生PROTO_P2P_CONNECT_REQ请求消息给对端,打通本机端(NAT端口)--->对端。
注意:5、6是异步存在的!!
7.当客户端接收到PROTO_P2P_CONNECT_REQ或者PROTO_P2P_CONNECT_ACK消息,本机状态的状态变为STATUS_MESSAGE。
之后可以正常的进行p2p通信!!!
二:代码实现P2P程序
(一)头文件p2p.h实现(含公共函数)
#ifndef __P2P_H__ #define __P2P_H__ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> //互联网地址族 #include <time.h> //---------------------------定义数据占用空间大小--------------------------- #define CLIENT_MAX 1024 //定义客户端中与对方连接的数量 #define CLIENT_ADDR_LENGTH 6 //定义空间存放客户端地址信息,IP占4字节,端口占2字节 #define BUFFER_LENGTH 512 //定义发送和接收的缓冲区大小,512字节 #define NUMBER_ID_LENGTH 4 //定义客户端ID的长度,占4字节 //---------------------------定义协议的状态:注意响应比请求大于0x80,方便计算--------------------------- #define PROTO_LOGIN_REQ 0x01 //登录服务器的请求与响应 #define PROTO_LOGIN_ACK 0x81 #define PROTO_HEARTBEAT_REQ 0x02 //心跳包的请求与响应,防止P2P连接被NAT网关关闭 #define PROTO_HEARTBEAT_ACK 0x82 #define PROTO_CONNECT_REQ 0x11 //连接请求与响应,向服务端发送P2P连接请求----(服务器与本端) #define PROTO_CONNECT_ACK 0x91 #define PROTO_NOTIFY_REQ 0x12 //服务端处理PROTO_CONNECT_REQ请求之后,发送PROTO_NOTIFY_REQ请求给对端----(服务器与对端) #define PROTO_NOTIFY_ACK 0x92 #define PROTO_P2P_CONNECT_REQ 0x13 //对端接收到PROTO_NOTIFY_REQ请求之后,开始与本端建立P2P连接;本端接收到PROTO_P2P_CONNECT_REQ之后,回送PROTO_P2P_CONNECT_ACK给对端,双方状态机变为P2P建立完成,可以进行P2P传输 #define PROTO_P2P_CONNECT_ACK 0x93 #define PROTO_MESSAGE_REQ 0x21 //原始数据到达(是添加了自定义的首部之后的数据)---包含服务端转发和P2P发送!!! #define PROTO_MESSAGE_ACK 0xA1 //---------------------------定义协议的索引,和各个协议状态对应的索引位置--------------------------- #define PROTO_BUFFER_VERSION_IDX 0 //版本字段位置索引,索引0,占1个字节 #define PROTO_BUFFER_STATUS_IDX 1 //协议的状态信息,索引1,占1个字节 #define PROTO_BUFFER_LENGTH_IDX (PROTO_BUFFER_STATUS_IDX+1) //协议的长度字段,索引2,占2个字节 #define PROTO_BUFFER_SELFID_IDX (PROTO_BUFFER_LENGTH_IDX+2) //协议的本端的ID信息字段,索引4,占4个字节 //login #define PROTO_LOGIN_SELFID_IDX PROTO_BUFFER_SELFID_IDX //登录时,需要添加本机的id到协议中去,在self id字段中,索引为4 //login ack #define PROTO_LOGIN_ACK_SELFID_IDX PROTO_BUFFER_SELFID_IDX //回送确认消息,需要添加本端Id信息,放入self id字段,索引为4 //heartbeat #define PROTO_HEARTBEAT_SELFID_IDX PROTO_BUFFER_SELFID_IDX //心跳检测,需要添加本机的id到协议中去,在self id字段中,索引为4 //heartbeat ack #define PROTO_HEARTBEAT_ACK_SELFID_IDX PROTO_BUFFER_SELFID_IDX //回送确认消息,需要添加本端Id信息,放入self id字段,索引为4 //connect #define PROTO_CONNECT_SELFID_IDX PROTO_BUFFER_SELFID_IDX //连接相关,需要添加本端和对端的id信息,而本端的id放入self id字段,索引4 #define PROTO_CONNECT_OTHERID_IDX (PROTO_BUFFER_SELFID_IDX+NUMBER_ID_LENGTH) //对端的id放入other id字段,索引为8 //connect ack #define PROTO_CONNECT_ACK_SELFID_IDX PROTO_BUFFER_SELFID_IDX //回送确认消息,需要添加本端Id信息,放入self id字段,索引为4 #define PROTO_CONNECT_ACK_OTHERID_IDX (PROTO_CONNECT_ACK_SELFID_IDX+NUMBER_ID_LENGTH) //对端的id放入other id字段,索引为8 #define PROTO_CONNECT_MESSAGE_ADDR_IDX (PROTO_CONNECT_ACK_OTHERID_IDX+NUMBER_ID_LENGTH) //这里开始存放地址数据,索引12。占6个字节,存放地址信息!!!---本机需要获取到的地址信息,才能发送p2p请求,而之前并没有获取过这个数据,所以最好携带过去 //notify #define PROTO_NOTIFY_SELFID_IDX PROTO_BUFFER_SELFID_IDX //通知对端字段,需要添加本端Id信息放入self id字段,索引为4 #define PROTO_NOTIFY_OTHERID_IDX (PROTO_BUFFER_SELFID_IDX+NUMBER_ID_LENGTH) //对端的id放入other id字段,索引为8 #define PROTO_NOTIFY_MESSAGE_ADDR_IDX (PROTO_NOTIFY_OTHERID_IDX+NUMBER_ID_LENGTH) //这里开始存放地址数据,索引12。占6个字节,存放地址信息!!!---对端需要获取到本机的地址信息,才能发送p2p请求,而之前并没有获取过这个数据,所以最好携带过去 //notify ack #define PROTO_NOTIFY_ACK_SELFID_IDX PROTO_BUFFER_SELFID_IDX //回送确认消息,需要添加本端Id信息,放入self id字段,索引为4 //p2p connect #define PROTO_P2P_CONNECT_SELFID_IDX PROTO_BUFFER_SELFID_IDX //P2P连接请求时,需要加入本端的Id信息放入self id这段,索引为4 //p2p connect ack #define PROTO_P2P_CONNECT_ACK_SELFID_IDX PROTO_BUFFER_SELFID_IDX //P2P连接响应时,需要加入本端的Id信息放入self id这段,索引为4 //message #define PROTO_MESSAGE_SELFID_IDX PROTO_BUFFER_SELFID_IDX //开始发送数据,需要添加本端Id信息,放入self id字段,索引为4 #define PROTO_MESSAGE_OTHERID_IDX (PROTO_MESSAGE_SELFID_IDX+NUMBER_ID_LENGTH) //需要加入对端ID信息到other id字段中,索引为8 #define PROTO_MESSAGE_CONTENT_IDX (PROTO_MESSAGE_OTHERID_IDX+NUMBER_ID_LENGTH) //从这里开始添加数据,索引为12 //message ack #define PROTO_MESSAGE_ACK_SELFID_IDX PROTO_BUFFER_SELFID_IDX //数据发送结束,需要进行响应,索引为4 #define PROTO_MESSAGE_ACK_OTHERID_IDX (PROTO_BUFFER_SELFID_IDX+NUMBER_ID_LENGTH) //数据发送结束,需要进行响应,索引为4 typedef unsigned int U32; typedef unsigned short U16; typedef unsigned char U8; //volatile的学习:https://www.runoob.com/w3cnote/c-volatile-keyword.html typedef volatile long UATOMIC; //当要求使用 volatile 声明的变量的值的时候,系统总是重新从它所在的内存读取数据,即使它前面的指令刚刚从该处读取过数据。 //可以用于实现原语操作 //定义回调函数 typedef void* (*CALLBACK)(void* arg); //定义返回状态 typedef enum{ RESULT_FAILED = -1, RESULT_SUCCESS = 0 }RESULT; //---------------------------定义客户端状态--------------------------- typedef enum { STATUS_INIT, STATUS_LOGIN, STATUS_HEARTBEAT, STATUS_CONNECT, STATUS_NOTIFY, STATUS_P2P_CONNECT, STATUS_MESSAGE } STATUS_SET; //---------------------------定义一个映射结构体,id==>地址和时间戳信息--------------------------- typedef struct __CLIENT_TABLE { U8 addr[CLIENT_ADDR_LENGTH]; //6字节存放地址信息 U32 client_id; //4字节存放客户端id long stamp; //存放时间戳信息 }client_table; //---------------------------服务器端数据结构--------------------------- int client_count = 0; client_table table[CLIENT_MAX] = {0}; //---------------------------客户端端数据结构--------------------------- //---------------------------服务器端函数--------------------------- /* cmpxchg(void* ptr, int old, int new) 如果ptr和old的值一样,则把new写到ptr内存, 否则写入ptr的值到old中 整个操作是原子的。 res返回值为0(失败)或1(成功)表明cas(对比和替换)操作是否成功. 下面__asm__学习:https://www.jianshu.com/p/fa6d9d9c63b4 -----------`x++`是否是原子的? 不是,是3个指令,`取x,x+1,存入x`。 >在单处理器上,如果执行x++时,禁止多线程调度,就可以实现原子。因为单处理的多线程并发是伪并发。 在多处理器上,需要借助cpu提供的Lock功能。 锁总线。读取内存值,修改,写回内存三步期间禁止别的CPU访问总线。 同时我估计使用Lock指令锁总线的时候,OS也不会把当前线程调度走了。要是调走了,那就麻烦了。 */ static unsigned long cmpxchg(UATOMIC* addr,unsigned long _old,unsigned long _new){ U8 res; //"__asm__"表示后面的代码为内嵌汇编 //"__volatile__"表示编译器不要优化代码,后面的指令保留原样,"volatile"是它的别名 __asm__ volatile ( "lock; cmpxchg %3, %1;sete %0" //加锁以及比较和替换原子操作,按后面顺序ret 0 , addr 1 , old 2, new 3 : "=a" (res) //"=a"是说要把__asm__操作结果写到__ret中 : "m" (*addr), "a" (_old), "r" (_new) //各个值存放的位置 : "cc", "memory"); return res; //返回结果,0(失败)或1(成功) } //返回时间戳信息 static long time_generator(){ static long lTimeStamp = 0; //局部静态变量 static long timeStampMutex = 0; //局部静态变量 if(cmpxchg(&timeStampMutex,0,1)){ //注意:只有TimeStampMutex原子操作成功才行进入下面语句 lTimeStamp = time(NULL); //生成时间戳,精度为s timeStampMutex = 0; } return lTimeStamp; //返回时间戳信息 } //将sockaddr地址转为array格式 static void addr_to_array(U8 *array, struct sockaddr_in *p_addr){ //存放IP和端口,需要6个字节 int i = 0; for(i = 0; i < 4; i++){ array[i] = *((unsigned char*)(&(p_addr->sin_addr.s_addr))+i); //获取IP,顺序存储 } for(i = 0; i < 2; i++){ array[4+i] = *((unsigned char*)(&(p_addr->sin_port))+i); //获取Port信息 } } //将array数组转为sockaddr地址格式 static void array_to_addr(U8 *array,struct sockaddr_in *p_addr){ int i=0; for(i = 0;i < 4;i++){ *((unsigned char*)(&p_addr->sin_addr.s_addr)+i) = array[i]; //获取IP,存放到sockaddr_in格式 } for(i = 0;i < 2;i++){ *((unsigned char*)(&p_addr->sin_port)+i) = array[4+i]; //获取Port,存放到sockaddr_in格式 } } static int get_index_by_clientid(int client_id){ int i = 0; int now_count = client_count; for(i = 1;i<=now_count;i++){ if(table[i].client_id == client_id) return i; } return RESULT_FAILED; } static int deal_connect_req(int sockfd,int client_id,int other_id){ U8 buffer[BUFFER_LENGTH] = {0}; buffer[PROTO_BUFFER_STATUS_IDX] = PROTO_NOTIFY_REQ; //发送PROTO_NOTIFY_REQ请求 buffer[PROTO_NOTIFY_SELFID_IDX] = client_id; buffer[PROTO_NOTIFY_OTHERID_IDX] = other_id; int index = get_index_by_clientid(client_id); //获取本端信息,一会发送给对端 //填充数据,6字节的IP和端口信息 memcpy(buffer+PROTO_NOTIFY_MESSAGE_ADDR_IDX,table[index].addr,CLIENT_ADDR_LENGTH); index = get_index_by_clientid(other_id); //获取对端信息,开始发送 //获取sockaddr信息 struct sockaddr_in c_addr; c_addr.sin_family = AF_INET; array_to_addr(table[index].addr,&c_addr); int len = PROTO_NOTIFY_MESSAGE_ADDR_IDX + BUFFER_LENGTH; //18字节,12的头部,6字节的数据 len = sendto(sockfd,buffer,len,0,(struct sockaddr*)&c_addr,sizeof(c_addr)); if(len < 0){ printf("Failed in deal_connect_req, send to other peer:%d\n",other_id); return RESULT_FAILED; } return RESULT_SUCCESS; } static int deal_connect_ack(int sockfd,int client_id,int other_id){ //可以和deal_connect_req合并 //printf("call deal_connect_ack!\n"); U8 buffer[BUFFER_LENGTH] = {0}; buffer[PROTO_BUFFER_STATUS_IDX] = PROTO_CONNECT_ACK; //回送PROTO_CONNECT_ACK buffer[PROTO_NOTIFY_SELFID_IDX] = client_id; buffer[PROTO_NOTIFY_OTHERID_IDX] = other_id; int index = get_index_by_clientid(other_id); //获取本端信息,一会发送给对端 //填充数据,6字节的IP和端口信息 memcpy(buffer+PROTO_CONNECT_MESSAGE_ADDR_IDX,table[index].addr,CLIENT_ADDR_LENGTH); index = get_index_by_clientid(client_id); //获取对端信息,开始发送 //获取sockaddr信息 struct sockaddr_in c_addr; c_addr.sin_family = AF_INET; array_to_addr(table[index].addr,&c_addr); int len = PROTO_NOTIFY_MESSAGE_ADDR_IDX + BUFFER_LENGTH; //18字节,12的头部,6字节的数据 len = sendto(sockfd,buffer,len,0,(struct sockaddr*)&c_addr,sizeof(c_addr)); if(len < 0){ printf("Failed in deal_connect_ack, send to client peer:%d\n",client_id); return RESULT_FAILED; } return RESULT_SUCCESS; } static int deal_message_req(int sockfd,int other_id,U8 *buffer,int length){ int index = get_index_by_clientid(other_id); //获取对端信息,开始发送 //获取sockaddr信息 struct sockaddr_in c_addr; c_addr.sin_family = AF_INET; array_to_addr(table[index].addr,&c_addr); //printf("send to peer: %d.%d.%d.%d:%d\n",table[index].addr[0],table[index].addr[1],table[index].addr[2],table[index].addr[3],c_addr.sin_port); int n = sendto(sockfd,buffer,length,0,(struct sockaddr*)&c_addr,sizeof(c_addr)); if(n < 0){ printf("Failed in deal_message_req!\n"); return RESULT_FAILED; } return RESULT_SUCCESS; } static int deal_ack(int sockfd,struct sockaddr_in *c_addr,U8 *buffer,int length){ //处理通用ACK消息,原来协议+0x80即可 buffer[PROTO_BUFFER_STATUS_IDX] += 0x80; int n = sendto(sockfd,buffer,length,0,(struct sockaddr*)c_addr,sizeof(*c_addr)); if(n < 0){ printf("Failed in deal_ack!\n"); return RESULT_FAILED; } return RESULT_SUCCESS; } //---------------------------客户端函数--------------------------- static int send_login_req(int sockfd,int client_id,struct sockaddr_in *ser_addr){ U8 buffer[BUFFER_LENGTH] = {0}; //buffer长度512 buffer[PROTO_BUFFER_STATUS_IDX] = PROTO_LOGIN_REQ; *(int *)(buffer+PROTO_LOGIN_SELFID_IDX) = client_id; int n = PROTO_LOGIN_SELFID_IDX + NUMBER_ID_LENGTH; n = sendto(sockfd,buffer,n,0,(struct sockaddr*)ser_addr,sizeof(struct sockaddr_in)); if(n < 0){ printf("Failed to login server!\n"); return RESULT_FAILED; } return RESULT_SUCCESS; } static int get_other_id(U8 *buffer,int *other_id){ int id=0,i; for(i=2;buffer[i]!=':'&&buffer[i]!='\0';i++){ //还可以进行其他严格处理 id += id*10 + buffer[i]-'0'; } *other_id = id; return i; //返回索引 } static int send_connect_req(int sockfd,int client_id,int other_id,struct sockaddr_in *ser_addr){ U8 buffer[BUFFER_LENGTH] = {0}; //buffer长度512 buffer[PROTO_BUFFER_STATUS_IDX] = PROTO_CONNECT_REQ; *(int *)(buffer+PROTO_CONNECT_SELFID_IDX) = client_id; *(int *)(buffer+PROTO_CONNECT_OTHERID_IDX) = other_id; int n = PROTO_CONNECT_OTHERID_IDX + NUMBER_ID_LENGTH; n = sendto(sockfd,buffer,n,0,(struct sockaddr*)ser_addr,sizeof(struct sockaddr_in)); if(n < 0){ printf("Failed to login server!\n"); return RESULT_FAILED; } return RESULT_SUCCESS; } static int send_message(int sockfd,int client_id,int other_id,struct sockaddr_in *addr,U8 *msg,int length){ U8 buffer[BUFFER_LENGTH] = {0}; buffer[PROTO_BUFFER_STATUS_IDX] = PROTO_MESSAGE_REQ; //处理消息 *(int*)(buffer+PROTO_MESSAGE_SELFID_IDX) = client_id; *(int*)(buffer+PROTO_MESSAGE_OTHERID_IDX) = other_id; memcpy(buffer + PROTO_MESSAGE_CONTENT_IDX,msg,length); //初始化数据部分 int n = PROTO_MESSAGE_CONTENT_IDX + length; *(U16*)(buffer+PROTO_BUFFER_LENGTH_IDX) = (U16)n; //存放数据长度 n = sendto(sockfd,buffer,n,0,(struct sockaddr*)addr,sizeof(struct sockaddr_in)); if(n < 0){ printf("Failed to send message to peer!\n"); return RESULT_FAILED; } return RESULT_SUCCESS; } static int send_p2pconnect(int sockfd,int client_id,struct sockaddr_in *p_addr){ U8 buffer[BUFFER_LENGTH] = {0}; buffer[PROTO_BUFFER_STATUS_IDX] = PROTO_P2P_CONNECT_REQ; *(int*)(buffer+PROTO_P2P_CONNECT_SELFID_IDX) = client_id; int n = PROTO_P2P_CONNECT_SELFID_IDX + NUMBER_ID_LENGTH; n = sendto(sockfd,buffer,n,0,(struct sockaddr*)p_addr,sizeof(struct sockaddr_in)); if(n<0){ printf("Failed to send p2p connect req!\n"); return RESULT_FAILED; } return RESULT_SUCCESS; } static int send_p2pconnect_ack(int sockfd,int client_id,struct sockaddr_in *p_addr){ U8 buffer[BUFFER_LENGTH] = {0}; buffer[PROTO_BUFFER_STATUS_IDX] = PROTO_P2P_CONNECT_ACK; *(int*)(buffer+PROTO_P2P_CONNECT_SELFID_IDX) = client_id; int n = PROTO_P2P_CONNECT_SELFID_IDX + NUMBER_ID_LENGTH; n = sendto(sockfd,buffer,n,0,(struct sockaddr*)p_addr,sizeof(struct sockaddr_in)); if(n < 0){ printf("Failed to send p2p connect ack!\n"); return RESULT_FAILED; } return RESULT_SUCCESS; } static int send_message_ack(int sockfd,int client_id,int other_id,struct sockaddr_in *p_addr){ U8 buffer[BUFFER_LENGTH] = {0}; buffer[PROTO_BUFFER_STATUS_IDX] = PROTO_MESSAGE_ACK; *(int*)(buffer+PROTO_MESSAGE_ACK_SELFID_IDX) = client_id; *(int*)(buffer+PROTO_MESSAGE_ACK_OTHERID_IDX) = other_id; int n=PROTO_MESSAGE_ACK_OTHERID_IDX + NUMBER_ID_LENGTH; n = sendto(sockfd,buffer,n,0,(struct sockaddr*)p_addr,sizeof(struct sockaddr_in)); if(n < 0){ printf("Failed to send message ack"); return RESULT_FAILED; } return RESULT_SUCCESS; } #endif
(二)服务端p2p_server.c实现(简单通信)
#include "p2p.h" int recv_buffer_parser(int sockfd,U8 *buffer,U32 length,struct sockaddr_in *c_addr){ //length是传递过来的数据长度 U8 status = buffer[PROTO_BUFFER_STATUS_IDX]; //解析状态 //printf("recv_buffer_parser --->status: %d\n",status); int client_id,other_id,index; int old,now; U8 *msg; switch(status){ case PROTO_LOGIN_REQ: //处理登录请求 printf("recv login req!\n"); old = client_count; now = old + 1; if(0 == cmpxchg((UATOMIC*)&client_count,old,now)){ //使用原子操作赋值 printf("client_count --> %d,old:%d,now:%d\n", client_count,old,now); return RESULT_FAILED; } //开始登录新用户的信息 U8 array[CLIENT_ADDR_LENGTH] = {0}; //6字节存放地址IP:Port信息 addr_to_array(array,c_addr); client_id = *(U32*)(buffer+PROTO_BUFFER_SELFID_IDX); printf("now:%d client:[%d],login ---> %d.%d.%d.%d:%d\n",now,client_id, *(unsigned char*)(&c_addr->sin_addr.s_addr), *((unsigned char*)(&c_addr->sin_addr.s_addr)+1), *((unsigned char*)(&c_addr->sin_addr.s_addr)+2), *((unsigned char*)(&c_addr->sin_addr.s_addr)+3), c_addr->sin_port); table[now].client_id = client_id; //获取4字节长度的用户id信息 memcpy(table[now].addr,array,CLIENT_ADDR_LENGTH); //获取用户的Addr地址信息 //需要回送确认消息----------- deal_ack(sockfd,c_addr,buffer,length); break; case PROTO_HEARTBEAT_REQ: //处理心跳包请求 printf("recv heartbeat req!\n"); client_id = *(unsigned int*)(buffer+PROTO_HEARTBEAT_SELFID_IDX); index = get_index_by_clientid(client_id); table[index].stamp = time_generator(); //需要回送确认消息----------- deal_ack(sockfd,c_addr,buffer,length); break; case PROTO_CONNECT_REQ: //处理连接请求 client_id = *(unsigned int*)(buffer+PROTO_CONNECT_SELFID_IDX); //获取本机id other_id = *(unsigned int*)(buffer+PROTO_CONNECT_OTHERID_IDX); //获取对端id printf("recv connect req from %d to %d!\n",client_id,other_id); deal_connect_req(sockfd,client_id,other_id); //处理连接请求,1.向对端发送信息 deal_connect_ack(sockfd,client_id,other_id); //2.回送确认消息 break; case PROTO_NOTIFY_ACK: //处理对端发送回来的确认消息,无用 printf("recv other notify ack message\n"); break; case PROTO_MESSAGE_REQ: //处理要经过服务器转发的数据和p2p无法建立的时候使用 printf("recv message req!\n"); msg = buffer + PROTO_MESSAGE_CONTENT_IDX; //获取要发送的数据 client_id = *(unsigned int*)(buffer+PROTO_MESSAGE_SELFID_IDX); other_id = *(unsigned int*)(buffer+PROTO_MESSAGE_OTHERID_IDX); printf("Client[%d] send to Other[%d]:%s\n",client_id,other_id,msg); deal_message_req(sockfd,other_id,buffer,length); //进行转发 break; case PROTO_MESSAGE_ACK: //转发确认消息 printf("recv message ack!\n"); client_id = *(unsigned int*)(buffer+PROTO_MESSAGE_SELFID_IDX); other_id = *(unsigned int*)(buffer+PROTO_MESSAGE_OTHERID_IDX); printf("Client[%d] send ack to Other[%d]\n",client_id,other_id); deal_message_req(sockfd,other_id,buffer,length); break; } return RESULT_SUCCESS; } int main(int argc,char *argv[]){ int sockfd; int n,length; char buffer[BUFFER_LENGTH] = {0}; struct sockaddr_in addr,c_addr; printf("UDP Server......\n"); if(argc != 2){ printf("Usage: %s port\n",argv[0]); exit(0); } sockfd = socket(AF_INET,SOCK_DGRAM,0); //获取通信socket if(sockfd < 0){ printf("Failed to open udp socket!\n"); exit(0); } addr.sin_family = AF_INET; addr.sin_port = htons(atoi(argv[1])); //获取端口信息 addr.sin_addr.s_addr = htonl(INADDR_ANY); //允许接收所有网卡的到达数据 length = sizeof(addr); if(bind(sockfd,(struct sockaddr*)&addr,length) < 0){ printf("Failed to bind udp socket with ip port"); exit(0); } while(1){ n = recvfrom(sockfd,buffer,BUFFER_LENGTH,0,(struct sockaddr*)&c_addr,&length); if(n > 0){ buffer[n] = 0x0; //设置结束符号 /* printf("%d.%d.%d.%d:%d say:%s\n", *(unsigned char*)(&c_addr.sin_addr.s_addr),*((unsigned char*)(&c_addr.sin_addr.s_addr)+1), *((unsigned char*)(&c_addr.sin_addr.s_addr)+2),*((unsigned char*)(&c_addr.sin_addr.s_addr)+3), c_addr.sin_port, buffer); //打印接收到的数据信息 */ int ret = recv_buffer_parser(sockfd,buffer,n,&c_addr); //解析接收的数据,存储相关信息 if(ret == RESULT_FAILED) continue; }else if(n == 0){ printf("client closed!\n"); }else{ printf("recv error\n"); break; } } return 0; }
(三)客户端代码实现(状态机转换,p2p通信)
#include "p2p.h" #include <pthread.h> static int status_machine = STATUS_INIT; //状态机 static int client_selfid = 0x0; //默认本端的id,需要在main方法中输入 struct sockaddr_in server_addr; //服务端的信息 client_table p2p_clients[CLIENT_MAX]; //可以连接的P2P对端最大数量 static int p2p_count = 0; static int buffer_parser(int sockfd,U8 *buffer,int length,struct sockaddr_in *addr){ U8 status = buffer[PROTO_BUFFER_STATUS_IDX]; //获取状态 U8 *msg; struct sockaddr_in p_addr; //获取对端的地址信息 //printf("buffer_parser...%d\n",status); switch(status){ case PROTO_LOGIN_ACK: //处理登录确认 printf(" Connect Server Success\n"); status_machine = STATUS_CONNECT; //状态转移 break; case PROTO_HEARTBEAT_ACK: //printf("recv heartbeat ack!\n"); break; case PROTO_NOTIFY_REQ: //处理服务端发送的NOTIFY请求 //printf("recv notify req!\n"); //获取对端的数据信息 p_addr.sin_family = AF_INET; array_to_addr(buffer+PROTO_NOTIFY_MESSAGE_ADDR_IDX,&p_addr); //回复确认消息给服务器 buffer[PROTO_BUFFER_STATUS_IDX] += 0x80; sendto(sockfd,buffer,PROTO_NOTIFY_MESSAGE_ADDR_IDX,0,(struct sockaddr*)&server_addr,sizeof(struct sockaddr_in)); status_machine = STATUS_NOTIFY; //开始打洞 send_p2pconnect(sockfd,client_selfid,&p_addr); //开始打洞!!! if(status_machine != STATUS_MESSAGE){ //注意:需要进行判断,因为是异步操作,所以本机接到NOTIFY请求的时候,可能已经接到对端的P2P连接请求,状态已经变为STATUS_MESSAGE,那么我们不能再变为未就绪状态 status_machine = STATUS_P2P_CONNECT; } break; case PROTO_CONNECT_ACK: //处理CONNECT 确认 //printf("recv connect ack!\n"); //获取对端的数据信息 p_addr.sin_family = AF_INET; array_to_addr(buffer+PROTO_CONNECT_MESSAGE_ADDR_IDX,&p_addr); send_p2pconnect(sockfd,client_selfid,&p_addr); //开始打洞!!! if(status_machine != STATUS_MESSAGE){ //注意:需要进行判断,因为是异步操作,所以本机接到NOTIFY请求的时候,可能已经接到对端的P2P连接请求,状态已经变为STATUS_MESSAGE,那么我们不能再变为未就绪状态 status_machine = STATUS_P2P_CONNECT; } break; case PROTO_P2P_CONNECT_REQ: //处理p2p连接请求---表示打洞成功,添加即可 if(status_machine != STATUS_MESSAGE){ //printf("recv p2p connect req!\n"); int now_count = p2p_count++; p2p_clients[now_count].stamp = time_generator(); p2p_clients[now_count].client_id = *(int*)(buffer+PROTO_P2P_CONNECT_SELFID_IDX); addr_to_array(p2p_clients[now_count].addr,addr); send_p2pconnect_ack(sockfd,client_selfid,addr); status_machine = STATUS_MESSAGE; printf("Enter P2P Model!\n"); } break; case PROTO_P2P_CONNECT_ACK: //处理p2p连接确认---表示打洞成功,添加即可 if(status_machine != STATUS_MESSAGE){ //printf("recv p2p connect ack!\n"); int now_count = p2p_count++; p2p_clients[now_count].stamp = time_generator(); p2p_clients[now_count].client_id = *(int*)(buffer+PROTO_P2P_CONNECT_SELFID_IDX); addr_to_array(p2p_clients[now_count].addr,addr); send_p2pconnect_ack(sockfd,client_selfid,addr); status_machine = STATUS_MESSAGE; printf("Enter P2P Model!\n"); } break; case PROTO_MESSAGE_REQ: //p2p数据到达 //printf("recv p2p data....\n"); msg = buffer + PROTO_MESSAGE_CONTENT_IDX; U32 other_id = *(U32*)(buffer+PROTO_MESSAGE_SELFID_IDX); printf("recv p2p data:%s from:%d\n",msg,other_id); send_message_ack(sockfd,client_selfid,other_id,addr); break; case PROTO_MESSAGE_ACK: //printf("peer recv message, and send ack to me!\n"); break; } } void *recv_callback(void *arg){ int sockfd = *(int*)arg; //获取sockfd struct sockaddr_in addr; int length = sizeof(struct sockaddr_in); U8 buffer[BUFFER_LENGTH] = {0}; while(1){ int n = recvfrom(sockfd,buffer,BUFFER_LENGTH,0,(struct sockaddr*)&addr,&length); printf("recvfrom data...\n"); if(n > 0){ buffer[n] = 0; buffer_parser(sockfd,buffer,n,&addr); //解析数据 }else if(n == 0){ printf("server closed\n"); close(sockfd); break; }else{ printf("Failed to call recvfrom\n"); close(sockfd); break; } } } void *send_callback(void *arg){ //线程处理发送消息 int sockfd = *(int*)arg; //获取sockfd char buffer[BUFFER_LENGTH] = {0}; while(1){ bzero(buffer,BUFFER_LENGTH); //置为0 //printf("===client status====%d===\n",status_machine); if(status_machine == STATUS_CONNECT){ printf("-----> please enter message(eg. C/S otherID: ...):\n"); gets(buffer); //获取要输入的数据 //如果是登录状态,可以进行p2p连接或者服务器转发 int other_id,idx; idx = get_other_id(buffer,&other_id); //printf("%d--->%d\n",client_selfid,other_id); if(buffer[0] == 'C'){ //开始进行P2P连接 send_connect_req(sockfd,client_selfid,other_id,&server_addr); }else{ int length = strlen(buffer); send_message(sockfd,client_selfid,other_id,&server_addr,buffer+idx+1,length-idx-1); //发送给服务器进行转发 } sleep(1); //等待建立p2p连接 }else if(status_machine == STATUS_MESSAGE){ //可以进行P2P通信 printf("-----> please enter p2p message:\n"); gets(buffer); //获取要输入的数据 //与最新加入的进行p2p通信 int now_count = p2p_count; //这个是最新的序号 struct sockaddr_in c_addr; //对端的地址信息 c_addr.sin_family = AF_INET; array_to_addr(p2p_clients[now_count-1].addr,&c_addr); int length = strlen(buffer); send_message(sockfd,client_selfid,0,&c_addr,buffer,length); //直接发送给对端,P2P通信 }else if(status_machine == STATUS_NOTIFY || status_machine == STATUS_P2P_CONNECT ){ printf("-----> please enter message(S otherID:...):\n"); printf("status:%d\n",status_machine); //scanf("%s",buffer); //获取要输入的数据 gets(buffer); //获取要输入的数据 int length = strlen(buffer); int other_id,idx; idx = get_other_id(buffer,&other_id); send_message(sockfd,client_selfid,other_id,&server_addr,buffer+idx+1,length-idx-1); //发送给服务器进行转发 } } } int main(int argc,char *argv[]){ printf("UDP Client......\n"); if(argc != 4){ printf("Usage: %s serverIp serverPort clientID\n",argv[0]); exit(0); } int sockfd = socket(AF_INET,SOCK_DGRAM,0); if(sockfd < 0){ printf("Failed to create socket!\n"); exit(0); } //创建两个线程,分别处理接收和发送信息 pthread_t thread_id[2] = {0}; CALLBACK cb[2] = {send_callback,recv_callback}; int i; for(i=0;i<2;i++){ int ret = pthread_create(&thread_id[i],NULL,cb[i],&sockfd); //创建线程,获取线程号,传入回调方法和参数 if(ret){ printf("Failed to create thread!\n"); exit(1); } } //主线程进行登录操作 server_addr.sin_family = AF_INET; server_addr.sin_addr.s_addr = inet_addr(argv[1]); server_addr.sin_port = htons(atoi(argv[2])); client_selfid = atoi(argv[3]); status_machine = STATUS_LOGIN; //修改客户端当前状态 send_login_req(sockfd,client_selfid,&server_addr); //发送登录请求 for(i = 0;i<2;i++){ pthread_join(thread_id[i],NULL); //join子线程 } return 0; }
(四)程序编译
1.编译服务端
gcc p2p_server.c -o ps
2.编译客户端
gcc p2p_client.c -o pc -lpthread
(五)代码测试
1.服务端查看:
2.客户端1查看
3.客户端2查看