模型训练

from skimage import io, transform
import glob
import os
import tensorflow as tf
import numpy as np
import time

# 数据集地址
# path = '/home/zhang/input_data_s/'
#path = 'D:/zhang/input_data/'
path='F:/shuye/input_data/'

# 模型保存地址
# model_path = '/home/zhang/save1/model.ckpt'
model_path = 'F:/shuye/save1/model.ckpt'
# 将所有的图片resize成100*100
w = 100
h = 100
c = 3


# 读取图片
def read_img(path):
    cate = [path + x for x in os.listdir(path) if os.path.isdir(path + x)]
    imgs = []
    labels = []
    for idx, folder in enumerate(cate):
        for im in glob.glob(folder + '/*.jpg'):
            print('reading the images:%s' % (im))
            img = io.imread(im)
            img = transform.resize(img, (w, h))
            imgs.append(img)
            labels.append(idx)
    return np.asarray(imgs, np.float32), np.asarray(labels, np.int32)


data, label = read_img(path)
# 打乱顺序
num_example = data.shape[0]
arr = np.arange(num_example)
np.random.shuffle(arr)
data = data[arr]
label = label[arr]
# 将所有数据分为训练集和验证集
ratio = 0.8
s = np.int(num_example * ratio)
x_train = data
y_train = label
x_val = data
y_val = label
# -----------------构建网络----------------------
# 占位符
x = tf.placeholder(tf.float32, shape=[None, w, h, c], name='x')
y_ = tf.placeholder(tf.int32, shape=[None, ], name='y_')


def inference(input_tensor, train, regularizer):
    with tf.variable_scope('layer1-conv1'):
        conv1_weights = tf.get_variable("weight", [5, 5, 3, 32],
                                        initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv1_biases = tf.get_variable("bias", [32], initializer=tf.constant_initializer(0.0))
        conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')
        relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))
    with tf.name_scope("layer2-pool1"):
        pool1 = tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="VALID")
    with tf.variable_scope("layer3-conv2"):
        conv2_weights = tf.get_variable("weight", [5, 5, 32, 64],
                                        initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv2_biases = tf.get_variable("bias", [64], initializer=tf.constant_initializer(0.0))
        conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')
        relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))
    with tf.name_scope("layer4-pool2"):
        pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')

    with tf.variable_scope("layer5-conv3"):
        conv3_weights = tf.get_variable("weight", [3, 3, 64, 128],
                                        initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv3_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0))
        conv3 = tf.nn.conv2d(pool2, conv3_weights, strides=[1, 1, 1, 1], padding='SAME')
        relu3 = tf.nn.relu(tf.nn.bias_add(conv3, conv3_biases))
    with tf.name_scope("layer6-pool3"):
        pool3 = tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')

    with tf.variable_scope("layer7-conv4"):
        conv4_weights = tf.get_variable("weight", [3, 3, 128, 128],
                                        initializer=tf.truncated_normal_initializer(stddev=0.1))
        conv4_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0))
        conv4 = tf.nn.conv2d(pool3, conv4_weights, strides=[1, 1, 1, 1], padding='SAME')
        relu4 = tf.nn.relu(tf.nn.bias_add(conv4, conv4_biases))
    with tf.name_scope("layer8-pool4"):
        pool4 = tf.nn.max_pool(relu4, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
        nodes = 6 * 6 * 128
        reshaped = tf.reshape(pool4, [-1, nodes])

    with tf.variable_scope('layer9-fc1'):
        fc1_weights = tf.get_variable("weight", [nodes, 1024],
                                      initializer=tf.truncated_normal_initializer(stddev=0.1))
        if regularizer != None: tf.add_to_collection('losses', regularizer(fc1_weights))
        fc1_biases = tf.get_variable("bias", [1024], initializer=tf.constant_initializer(0.1))
        fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)
        if train: fc1 = tf.nn.dropout(fc1, 0.5)

    with tf.variable_scope('layer10-fc2'):
        fc2_weights = tf.get_variable("weight", [1024, 512],
                                      initializer=tf.truncated_normal_initializer(stddev=0.1))
        if regularizer != None: tf.add_to_collection('losses', regularizer(fc2_weights))
        fc2_biases = tf.get_variable("bias", [512], initializer=tf.constant_initializer(0.1))
        fc2 = tf.nn.relu(tf.matmul(fc1, fc2_weights) + fc2_biases)
        if train: fc2 = tf.nn.dropout(fc2, 0.5)
    with tf.variable_scope('layer11-fc3'):
        fc3_weights = tf.get_variable("weight", [512, 5],
                                      initializer=tf.truncated_normal_initializer(stddev=0.1))
        if regularizer != None: tf.add_to_collection('losses', regularizer(fc3_weights))
        fc3_biases = tf.get_variable("bias", [5], initializer=tf.constant_initializer(0.1))
        logit = tf.matmul(fc2, fc3_weights) + fc3_biases
    return logit


# ---------------------------网络结束---------------------------
regularizer = tf.contrib.layers.l2_regularizer(0.0001)
logits = inference(x, False, regularizer)
# (小处理)将logits乘以1赋值给logits_eval,定义name,方便在后续调用模型时通过tensor名字调用输出tensor
b = tf.constant(value=1, dtype=tf.float32)
logits_eval = tf.multiply(logits, b, name='logits_eval')
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y_)
train_op = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.argmax(logits, 1), tf.int32), y_)
acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))


# 定义一个函数,按批次取数据
def minibatches(inputs=None, targets=None, batch_size=None, shuffle=False):
    assert len(inputs) == len(targets)
    if shuffle:
        indices = np.arange(len(inputs))
        np.random.shuffle(indices)
    for start_idx in range(0, len(inputs) - batch_size + 1, batch_size):
        if shuffle:
            excerpt = indices[start_idx:start_idx + batch_size]
        else:
            excerpt = slice(start_idx, start_idx + batch_size)
        yield inputs[excerpt], targets[excerpt]


# 训练和测试数据,可将n_epoch设置更大一些
n_epoch = 50
batch_size = 64
summary_op = tf.summary.merge_all()
# 产生一个会话
sess = tf.Session()
# 产生一个writer来写log文件
train_writer = tf.summary.FileWriter('logs/', sess.graph)
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for epoch in range(n_epoch):
    start_time = time.time()

    # training
    train_loss, train_acc, n_batch = 0, 0, 0
    for x_train_a, y_train_a in minibatches(x_train, y_train, batch_size, shuffle=True):
        _, err, ac = sess.run([train_op, loss, acc], feed_dict={x: x_train_a, y_: y_train_a})
        train_loss += err;
        train_acc += ac;
        n_batch += 1
    print("   train loss: %f" % (np.sum(train_loss) / n_batch))
    print("   train acc: %f" % (np.sum(train_acc) / n_batch))

    # validation
    val_loss, val_acc, n_batch = 0, 0, 0
    for x_val_a, y_val_a in minibatches(x_val, y_val, batch_size, shuffle=False):
        err, ac = sess.run([loss, acc], feed_dict={x: x_val_a, y_: y_val_a})
        val_loss += err;
        val_acc += ac;
        n_batch += 1
    print("   validation loss: %f" % (np.sum(val_loss) / n_batch))
    print("   validation acc: %f" % (np.sum(val_acc) / n_batch))
saver.save(sess, model_path)
sess.close()

 生成.pb模型

import tensorflow as tf
import  numpy as np
import PIL.Image as Image
from skimage import io, transform

def recognize(jpg_path, pb_file_path):
    with tf.Graph().as_default():
        output_graph_def = tf.GraphDef()

        with open(pb_file_path, "rb") as f:
            output_graph_def.ParseFromString(f.read())
            _ = tf.import_graph_def(output_graph_def, name="")

        with tf.Session() as sess:
            init = tf.global_variables_initializer()
            sess.run(init)
            input_x = sess.graph.get_tensor_by_name("input:0")
            print (input_x)
            out_softmax = sess.graph.get_tensor_by_name("softmax_linear:0")
            print (out_softmax)
            out_label = sess.graph.get_tensor_by_name("output:0")
            print (out_label)

            img = io.imread(jpg_path)
            img = transform.resize(img, (60, 60, 3))
            img_out_softmax = sess.run(out_softmax, feed_dict={input_x:np.reshape(img, [1, 60, 60, 3])})

            print ("img_out_softmax:",img_out_softmax)
            prediction_labels = np.argmax(img_out_softmax, axis=1)
            print ("label:",prediction_labels)

recognize("/home/zhang/input_data/tulips/3202130001. ", "/home/zhang/Downloads/model/expert-graph.pb")

 

posted on 2019-05-08 21:33  Mentality  阅读(235)  评论(0编辑  收藏  举报