HDU 3949 XOR [线性基|高斯消元]
[TOC]
#题目链接
HDU 3949 XOR
#题解
hdu3949XOR
搞死消元找到一组线性无关组
消出对角矩阵后
对于k二进制拆分
对于每列只有有一个1的,显然可以用k的二进制数直接异或得到第k大
对于一列由多个1的,由于二进制性质,由于2的幂+1次方比2的(1到幂)的和要大,所以不影响大小
#代码
#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9') c = getchar();
while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = getchar();
return x * f;
}
void print(int x) {
if(x < 0) {
putchar('-');
x = -x;
}
if(x >= 10) print(x / 10);
putchar(x % 10 + '0');
}
const int maxn = 10007;
int a[maxn],tot = 0,zero = 0;
int n;
void guass() {
tot = zero = 0;
for(int i = 60;i >= 0;-- i) {
int j = tot + 1;
while(!((a[j] >> i) & 1) && j <= n)++ j;
if(j == n + 1) continue;
tot ++;
swap(a[tot],a[j]);
for(j = 1;j <= n;++ j) {
if(j != tot && ((a[j] >> i) & 1)) a[j] ^= a[tot];
}
}
if(tot != n) zero = 1;
}
int query(int x) {
int ans = 0;
x -= zero;
if(!x) return 0;
if(x >= (1ll << tot)) return -1;
for(int i = 1;i <= tot;++ i) {
if(x & (1ll << (tot - i))) ans ^= a[i];
}
return ans;
}
void work() {
n = read();
for(int i = 1;i <= n;++ i) a[i] = read();
guass();
int m = read();
while(m --) {
int x = read();
print(query(x));
putchar('\n');
}
}
main() {
int T = read();
for(int i = 1;i <= T;++ i) {
memset(a,0,sizeof a);
printf("Case #%d:\n",i);
work();
}
}