loj#2038. 「SHOI2015」超能粒子炮・改

题目链接

loj#2038. 「SHOI2015」超能粒子炮・改

题解

卢卡斯定理
之后对于%p分类
剩下的是个子问题递归

n,k小于p的S可以预处理,C可以卢卡斯算

代码

#include<cstdio> 
#include<algorithm> 

inline long long read() { 
	long long  x = 0,f = 1; 
	char c = getchar(); 
	while(c < '0' || c > '9') c = getchar(); 
	while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = getchar(); 
	return x * f; 
} 

#define LL long long 
const int P = 2333; 
const int maxn = P + 7; 
int c[maxn][maxn],s[maxn][maxn]; 
inline void add(int &x,int y) {  
	x = x + y >= P ? x + y - P : x + y; 	
} 
int C(LL n,LL k) { 
    if(k < 0 || k > n)return 0; 
    if(n<P)return c[n][k]; 
    LL a = n / P,b = k/P; 
    return C(a,b) * c[n % P][k % P] % P; 
} 
int S(LL n,LL k) { 
    if(k < 0) return 0;
    LL a = n/P,b = k / P; 
    return (S(a,b - 1) * s[n % P][P - 1] + C(a,b) * s[n % P][k % P]) % P;  
} 
void pre() { 
	c[0][0] = 1; 
    for(int i = 0;i < P - 1;++ i) 
        for(int j = 0;j <= i;++ j) 
            add(c[i + 1][j],c[i][j]),add(c[i + 1][j + 1],c[i][j]); 
            
    for(int i = 0;i < P;++ i) {  
        s[i][0] = c[i][0];  
		//if(i == 2332) puts("cnm");  
        for(int j = 1;j < P;++ j) { 
			//if(j == 2332) puts("cnm"); 
			s[i][j] = s[i][j - 1] , add(s[i][j],c[i][j]);  
		} 
	} 
} 
int main() { 
	pre(); 
    LL T = read(); 
    for(int i = 1;i <= T;++ i) { 
         LL a = read(),b = read();  
        printf("%lld\n",S(a,b)); 
    } 
    return 0; 
} 
posted @ 2018-09-05 20:29  zzzzx  阅读(195)  评论(0编辑  收藏  举报