CF23 E. Tree 树形dp+高精度
题目链接
题解
CF竟让卡常QAQ
dp+高精度
dp[x][j]表示以x为根的子树,x所属的联通块大小为j,的最大乘积(不带j这块
最后f[x]维护以x为根的子树的最大答案
有点卡内存...高精压了4位
看了题解,了解到,其实这个dp的复杂度其实是O(n^2)
每次转移是复杂度是x之前的子树的sz * 当前子树的sz
相当于之前子树所有点和当前子树的点组成的点对数
而每个点对只会在lca处被计算一次
所以复杂度O(n^2)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' ||c > '9')c = getchar();
while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = getchar();
return x * f;
}
const int L = 10000;
const int maxn = 701;
const int maxlen = 61;
struct Bignum{
int num[maxlen];
int len;
Bignum () {memset(num,0,sizeof num); len = 0; }
void print() {
for(int i = len;i;-- i)
if(i != len) {
if(num[i - 1] < L / 10) {
printf("0");
if(num[i - 1] < L / 100) {
printf("0");
if(num[i - 1] < L / 1000) printf("0");
}
}
printf("%d",num[i - 1]);
} else printf("%d",num[i - 1]);
puts("");
}
} dp[maxn][maxn],Max[maxn];
Bignum operator * (Bignum a,Bignum b) {
int len = 0;
Bignum ret;
for(int i = 0;i < a.len;i ++) for(int j = 0;j < b.len;j ++) {
ret.num[i + j] += a.num[i] * b.num[j];
if(ret.num[i + j] >= L) {
ret.num[i + j + 1] += ret.num[i + j] / L;
ret.num[i + j] %= L;
}
}
len = a.len + b.len;
while(ret.num[len-1] == 0 && len > 1) len --;
ret.len = len;
return ret;
}
Bignum operator / (Bignum a,int b) {
int len = a.len;
Bignum ret;
if(!b) return ret;
for(int i = 0;i < len;i ++) {
ret.num[i] += a.num[i]* b;
if(ret.num[i] >= L) {
ret.num[i+1] += ret.num[i] / L;
ret.num[i] %= L;
}
}
while(ret.num[len] > 0) ret.num[len+1] = ret.num[len] / L, ret.num[len ++] %= L;
ret.len = len;
return ret;
}
Bignum max(Bignum a,Bignum b) {
if(a.len < b.len) return b;
if(a.len > b.len) return a;
for(int i = a.len-1;i >= 0;i --) {
if(a.num[i] < b.num[i]) return b;
if(a.num[i] > b.num[i]) return a;
}
return b;
}
//-------------------------------
struct node {
int v,next;
} edge[maxn << 1];
int head[maxn],num = 0;
inline void add_edge(int u,int v) {
edge[++ num].v = v;edge[num].next = head[u];head[u] = num;
} int n;
int siz[maxn];
void dfs(int x,int fa) {
siz[x] = 1;
dp[x][1].len = 1; dp[x][1].num[0] = 1;
for(int i = head[x];i;i = edge[i].next) {
int v = edge[i].v;
if(v == fa) continue;
dfs(v,x);
siz[x] += siz[v];
}
for(int i = head[x];i;i = edge[i].next) {
int v = edge[i].v;
if(v == fa) continue;
for(int i = siz[x];i;-- i) {
if(dp[x][i].len)
for(int j = 1;j <= siz[v];++ j)
if(dp[v][j].len) dp[x][i + j] = max(dp[x][i + j],dp[x][i] * dp[v][j]);
dp[x][i] = dp[x][i] * Max[v];
}
}
for(int i = siz[x];i ;-- i) Max[x] = max(Max[x],dp[x][i] / i);
}
int main() {
n = read();
for(int i = 1,u,v;i < n;++ i) {
u = read();v = read();
add_edge(u,v); add_edge(v,u);
}
dfs(1,0);
Max[1].print();