Wannafly挑战赛17 B

题解

大概就是求证这个

\[\sum_i^nC_{n}^i*C_n^i = C_{2n}^n \]

证明:

\[(1+x)^{2n} = [C(0,n)+C(1,n)*x+...+C(n,n)*x^n]*[[C(0,n)+C(1,n)*x+...+C(n,n)*x^n]] \]

\[=...+[C(0,n)*C(n,n)+C(n-1,n)+...+C(n,n)*C(0,n)]x^n+... \]

也就是说,在\((1+x)^{2n}\)的展开式中,\(x^n\)的系数是

\[\sum_k^nC(k,n)*C(n-k) = \sum_k^nC(k,n)^2 \]

以上,我们证明了范德蒙德卷积
根据二项式定理

\[(1+x)^{2n}=\sum_k^{2n}[C(k,2n)]*x^k$$即$x^k$的系数为C(n,2n),由此可得$\sum_k^nC(k,n)^2 = C(n,2n)$ ###代码 ```c++ #include<cstdio> #include<algorithm> #define LL long long #define mod 998244353 LL inv(LL x,int y) { LL ret = 1; for(;y;y >>= 1,x = x * x % mod) if(y & 1) ret = ret * x % mod; return ret; } const int maxn = 1000007; LL jc[maxn * 2]; LL C(int a,int b) { return ((((jc[a] * inv(jc[b],mod - 2)% mod) + mod) % mod) * inv(jc[a - b],mod - 2) + mod) % mod; } int main() { jc[0] = jc[1] = 1; int n; scanf("%d",&n); for(int i = 2;i <= 2 * n;++ i) jc[i] = jc[i - 1] * i % mod; LL ans = 0; for(int i = 1;i <= n;++ i) ans = (ans + C(2 * i,i)) % mod; printf("%lld\n",ans); return 0; } ```\]

posted @ 2018-06-09 19:39  zzzzx  阅读(174)  评论(0编辑  收藏  举报