Processing math: 100%

luogu P3811 【模板】乘法逆元

 


题目背景

这是一道模板题

题目描述

给定n,p求1~n中所有整数在模p意义下的乘法逆元。

输入输出格式

输入格式:

一行n,p

输出格式:

n行,第i行表示i在模p意义下的逆元。

输入输出样例

输入样例#1:

10 13

输出样例#1:

1
7
9
10
8
11
2
5
3
4

说明

1n3×106,n<p<200005281n3×106,n<p<20000528
输入保证 p p 为质数。
逆元可以线性求:
inv(i)=((p-p/i)*inv[p%i])%p
也可以扩展欧几里得求
那么就是
ax+p(模数)y=1的解
也可以根据快速幂来求
根据费马小定理
逆元就是a^(p-2)
以上几种方法均需保证p为素数

#include<cstdio>
#include<algorithm>
#define LL long long
LL inv[3000053];
//int inv[MAXN]; 
void INV(int a,int p) 
{
    inv[1] = 1;
    for (int i=2; i<=a; ++i)
        inv[i] = (LL)((p-(p/i)%p)%p*inv[p%i]%p)%p; 
}


int main() {
    int n,p;
    scanf("%d%d",&n,&p);
    INV(n,p);
    for(int i=1;i<=n;++i) 
        printf("%d\n",inv[i]);
    return 0;
}
posted @   zzzzx  阅读(187)  评论(0编辑  收藏  举报
编辑推荐:
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
· Linux系统下SQL Server数据库镜像配置全流程详解
· 现代计算机视觉入门之:什么是视频
阅读排行:
· Sdcb Chats 技术博客:数据库 ID 选型的曲折之路 - 从 Guid 到自增 ID,再到
· .NET Core GC压缩(compact_phase)底层原理浅谈
· Winform-耗时操作导致界面渲染滞后
· Phi小模型开发教程:C#使用本地模型Phi视觉模型分析图像,实现图片分类、搜索等功能
· 语音处理 开源项目 EchoSharp
点击右上角即可分享
微信分享提示