平衡树与可持久化treap
平衡树(二叉树)
线段树不支持插入or删除一个数于是平衡树产生了
常见平衡树:treap(比sbt慢,好写吧),SBT(快,比较好写,有些功能不支持),splay(特别慢,复杂度当做根号n来用,功能强大,不好写),rbt(红黑树,特别快),//替罪羊树,朝鲜树
晚上要讲的不旋转平衡树:
平衡树:
节点的左儿子中的每一个一定比他小,右儿子中的每一个一定比他大
那么它的中序遍历是有序的
用下标建树,那么区间询问的话就是求一棵子数和子树根和领一棵子数的一部分
treap:
tree+heap,平衡树和heap的性质是矛盾的,所以每个节点存一个key和value
key值满足heap性质,value满足平衡树的性质,这样的树叫做treap?
插入:
插入的新节点的key值随机,调用rand函数(这样保证树的深度一定是logn的)改变树的形态使它重新满足hea与平衡树性质
操作1.merge:
merge(P1,P2):把以p1为根的treap和以p2为根的treap合并成一个treap(p1中的所有制小于
操作2.splays:
把以p为根的treap中拿出k小的数,组成一个新treap
保证原先树中的所有数>新树中所有数
可持久化treap :
插:
建一个只有一个点的树(要插得数)例如(2.33)把(1,2)splay出来,再把新树(2.33)和(1,2)merge起来,再把(1,2,2.33)和(4,5)merge 一下
删除一个:
如删除(2.33),先把split(treap,3),此时把splay把(1,2)与(2.33,4,5)分离在split(treep2,1),此时(2.33)与(4,5)分离
在merge(treap1,treap3)合并即把(1,2),(4,5)合并,那么2.33就没了
实际操作
merge时,找key值最大的作为新treap的根,不是p1就是p2
1要是p1.p>=p2.p此时p1作为新根,那么p1的左儿子不会变换,右子树就是p1的右子树和p2 merge 一下,即 merge(p1.r,p2);
2要是p2.p>p1.p此时p2作为新根,那么p2的右儿子不会变换,左儿子就是p2的
左子树 和 p1 mege 一下 即 merge(p2.l,p1);
split(p,k)几点记录value,key,l,r,size
p.L<-p->p.r;
1.要是k<=p.l.size 说明k小的点全在左子数,递归split(p.l,k);构成新树的时候直接把split后剩下的左子树接到P根上就好了
2.k=p.l.size+1;,返回两棵树(p.l-p,p.r)
3.k>p.l.siz+1,左边已经全不要,那么就split(p.r,k-p.l.size-1);
返回两棵树(p.l-p-p.r,剩余p.r)
merge:
int merge(int p1,int p2) {
if(!p1)return p2;//zuo bian kong le
if(!p2)return p1;//you bian kong le
if(z[p1].key<z[p2].key) {
z[p1].r=merge(z[p1].r,p2);
return p1;
}
else {
z[p2].l=merge(z[p2].l,p1);
return p2
}
split:
pair<int,int>split(int p,int n) {
if(z[z[p].l].size>=n) {
if(!)
}
else {
if(z[p].r==0)return pair(p,0);
else {
pair<int,int>px=split(z[p].r,n-z[z[p].l].size-1)
z[p].r=px.frist;
int pr=px.second;
return make_pair(p,pr);
}
}
}
query_min:
查询那些数比x数小,当找到一个根节点比x小时,那么该节点的所有子树都比他小,那么就把子树size+1加到答案里-->删除一个数的时候时用来确定split的k(比要删除的数小的)值
DAY3
未分类
在此输入正文
T3
g[i][j]表示在第i棵树中其他点到到j的距离和
设第i棵树是由第j颗和第k颗合并来的那么g[i][p]=g[j][p]+dis[j][p1][p2](在第j棵树中p1p2的距离)*size(k)
g肯定不能用普通数组+普通动态规划求解,记忆花搜索+map只求交点处的那个点的g[X][P]就好了
关于dis的求法
1.p1,p2在一棵树中时,dis[i][p1][p2]=dis[j][p1][p1]
2.不在同一棵树中,dis[j][p1][p3]+l+dis[k][p2][p4]
#ifdef WIN32
#define lld "I64d"
#else
#define lld "%lld"
#endif
夜晚
平衡树(二叉树)
线段树不支持插入or删除一个数于是平衡树产生了
常见平衡树:treap(比sbt慢,好写吧),SBT(快,比较好写,有些功能不支持),splay(特别慢,复杂度当做根号n来用,功能强大,不好写),rbt(红黑树,特别快),//替罪羊树,朝鲜树
晚上要讲的不旋转平衡树:
平衡树:
节点的左儿子中的每一个一定比他小,右儿子中的每一个一定比他大
那么它的中序遍历是有序的
用下标建树,那么区间询问的话就是求一棵子数和子树根和领一棵子数的一部分
treap:
tree+heap,平衡树和heap的性质是矛盾的,所以每个节点存一个key和value
key值满足heap性质,value满足平衡树的性质,这样的树叫做treap?
插入:
插入的新节点的key值随机,调用rand函数(这样保证树的深度一定是logn的)改变树的形态使它重新满足hea与平衡树性质
操作1.merge:
merge(P1,P2):把以p1为根的treap和以p2为根的treap合并成一个treap(p1中的所有制小于
操作2.splays:
把以p为根的treap中拿出k小的数,组成一个新treap
保证原先树中的所有数>新树中所有数
可持久化treap :
插:
建一个只有一个点的树(要插得数)例如(2.33)把(1,2)splay出来,再把新树(2.33)和(1,2)merge起来,再把(1,2,2.33)和(4,5)merge 一下
删除一个:
如删除(2.33),先把split(treap,3),此时把splay把(1,2)与(2.33,4,5)分离在split(treep2,1),此时(2.33)与(4,5)分离
在merge(treap1,treap3)合并即把(1,2),(4,5)合并,那么2.33就没了
实际操作
merge时,找key值最大的作为新treap的根,不是p1就是p2
1要是p1.p>=p2.p此时p1作为新根,那么p1的左儿子不会变换,右子树就是p1的右子树和p2 merge 一下,即 merge(p1.r,p2);
2要是p2.p>p1.p此时p2作为新根,那么p2的右儿子不会变换,左儿子就是p2的
左子树 和 p1 mege 一下 即 merge(p2.l,p1);
split(p,k)几点记录value,key,l,r,size
p.L<-p->p.r;
1.要是k<=p.l.size 说明k小的点全在左子数,递归split(p.l,k);构成新树的时候直接把split后剩下的左子树接到P根上就好了
2.k=p.l.size+1;,返回两棵树(p.l-p,p.r)
3.k>p.l.siz+1,左边已经全不要,那么就split(p.r,k-p.l.size-1);
返回两棵树(p.l-p-p.r,剩余p.r)
merge:
int merge(int p1,int p2) {
if(!p1)return p2;//zuo bian kong le
if(!p2)return p1;//you bian kong le
if(z[p1].key<z[p2].key) {
z[p1].r=merge(z[p1].r,p2);
return p1;
}
else {
z[p2].l=merge(z[p2].l,p1);
return p2
}
split:
pair<int,int>split(int p,int n) {
if(z[z[p].l].size>=n) {
if(!)
}
else {
if(z[p].r==0)return pair(p,0);
else {
pair<int,int>px=split(z[p].r,n-z[z[p].l].size-1)
z[p].r=px.frist;
int pr=px.second;
return make_pair(p,pr);
}
}
}
query_min:
查询那些数比x数小,当找到一个根节点比x小时,那么该节点的所有子树都比他小,那么就把子树size+1加到答案里-->删除一个数的时候时用来确定split的k(比要删除的数小的)值