深度学习--初识GAN
深度学习--GAN网络
GAN是一种深度学习模型,全称为生成对抗网络(Generative Adversarial Networks)。它由两个神经网络组成:一个生成器网络和一个判别器网络。
生成器网络通过学习训练数据的分布,生成新的数据。而判别器网络则尝试区分生成器生成的数据和真实的训练数据。在训练过程中,两个网络相互对抗,生成器网络试图欺骗判别器网络,使其无法准确地区分生成的数据和真实的训练数据,而判别器网络则试图正确地识别哪些数据是真实的。
分为两步:
- 固定G(生成),训练D(验证)
- 训练G