摆花

(flower.cpp/c/pas)

【问题描述】

    小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共 m 盆。通过调查顾客的喜好,小明列出了顾客最喜欢的 n 种花,从 1 到 n 标号。为了在门口展出更多种花,规定第 i 种花不能超过 ai盆,摆花时同一种花放在一起,且不同种类的花需按标号的从小到大的顺序依次摆列。

    试编程计算,一共有多少种不同的摆花方案。

 

【输入】

输入文件 flower.in,共 2 行。

第一行包含两个正整数 n 和 m,中间用一个空格隔开。

第二行有 n 个整数,每两个整数之间用一个空格隔开,依次表示 a1、a2、……an

 

【输出】

输出文件名为 flower.out。

输出只有一行,一个整数,表示有多少种方案。注意:因为方案数可能很多,请输出方案数对 1000007 取模的结果。

 

【输入输出样例 1】

flower.in

2 4

3 2

flower.out

2

分析:

动态规划:

题目要求花必须按从小到大的顺序摆放,并且同种类的花必须挨着放,则题目就简单多了

a[i]表示第i种花最多使用的盆数
f[i][j]表示前i种花,摆j盆的摆放方案数。对于第i种花可以使用0、1、2...a[i]盆,对应的前i-1种花摆放的盆数为j-0、j-1、j-2、...j-a[i]
即f[i][j]=f[i-1][j]+f[i-1][j-1]+f[i-1][j-2]+...+f[i-1][j-a[i]] =f[i-1][j-k](0<=k<=a[i],j>=k)
方程写出来后,最关键的就是赋初始值

初始值f[1][0]=1,f[1][1]=1,...f[1][a[1]]=1;
初始值f[i][0]=1;(1<=i<=n)

2 4
3 2
 为例:
很显然f[1][1]=f[1][2]=f[1][3]=1;
f[2][1]=2,前2种花,放一盆,则有1,2两种方法。又
f[2][1]=f[1][0]+f[1][1]=f[1][0]+1可以推出f[1][0]=1;
同样的方法可以推出f[2][0]=f[3][0]=...=f[n][0]=1;
(f[2][2]=f[1][0]+f[1][1]+f[1][2]
f[2][3]=f[1][1]+f[1][2]+f[1][3]
f[2][4]=f[1][2]+f[1][3]+f[1][2])
 
#include<iostream>
#include<cstring>
using namespace std;
int f[200][200]={{0,0}};
int a[200];
int main(){
 int n,m;
 cin>>n>>m;
 for(int i=1;i<=n;i++) cin>>a[i];
 memset(f,0,sizeof(f));
 for(int i=0;i<=a[1];i++) f[1][i]=1;
 for(int i=1;i<=n;i++)f[i][0]=1;
 for (int i=2;i<=n;i++)
  for(int j=1;j<=m;j++)
   for(int k=0;k<=a[i];k++)
    if (j>=k)f[i][j]=(f[i][j]+f[i-1][j-k])% 1000007;
 cout<<f[n][m]<<endl;
 return 0; 
}
View Code

 

 方法2:初始值f[0][0]=1;前0种花摆放0盆的方案数为1

//题目要求花必须按从小到大的顺序摆放,并且同种类的花必须挨着放,则题目就简单多了 
//f[i][j]表示前i种花,摆j盆的摆放方案数。对于第i种花可以使用0、1、2...a[i]盆,对应的前i-1种花摆放的盆数为j-0、j-1、j-2、...j-a[i] 
//即f[i][j]=f[i-1][j]+f[i-1][j-1]+f[i-1][j-2]+...+f[i-1][j-a[i]] (j>a[i])
//初始值f[0][0]=1;前0种花摆放0盆的方案数为1 
//方程写出来后,最关键的就是赋初始值 
#include<iostream>
#include<cstring>
using namespace std;
int f[200][200]={{0,0}};
int a[200];
int main(){
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>a[i];
    memset(f,0,sizeof(f));
    f[0][0]=1;
//    for(int i=0;i<=a[1];i++) f[1][i]=1;
//    for(int i=1;i<=n;i++)f[i][0]=1;
    for (int i=1;i<=n;i++)
        for(int j=0;j<=m;j++)
            for(int k=0;k<=a[i];k++)
                if (j>=k)f[i][j]=(f[i][j]+f[i-1][j-k])% 1000007;
    cout<<f[n][m]<<endl;
    return 0;    
}
View Code