前言
双元法是近些年来网络上流传出的一种求解不定积分的新方式,其既有准确得值、计算简便的快捷性,又在传统的第一类、第二类换元积分法的基础上有所创新,给我们提供了另一个视角看待不定积分求解的思维历程. 尤其用在考研时该方法的正确使用亦可在作答试卷时起到事半功倍的效果,特此深入研究了一下该方法,以个人见解对其总结汇集于此.
例题引入
例1. 求\(\int\sqrt{x^2+a^2}\mathrm{d}x\).
解1. [第二类换元积分法]
\[\int\sqrt{x^2+a^2}\mathrm{d}x = a\int\sqrt{(\frac{x}{a})^2+1}\mathrm{d}x = a^2\int\sqrt{(\frac{x}{a})^2+1}\mathrm{d}(\frac{x}{a}).
\]
利用三角换元,\(\mathrm{tan}\theta = \frac{x}{a}\),则\(\mathrm{sec}\theta = \sqrt{\mathrm{tan}^2\theta+1} = \frac{\sqrt{x^2+a^2}}{a}\).
则
\[\int\sqrt{x^2+a^2}\mathrm{d}x = a^2\int\mathrm{sec}\theta\mathrm{d}\mathrm{tan}\theta
\]
\[= a^2\mathrm{sec}\theta\mathrm{tan}\theta-a^2\int\mathrm{tan}\theta\mathrm{d}\mathrm{sec}\theta
\]
\[= a^2\mathrm{sec}\theta\mathrm{tan}\theta-a^2\int\mathrm{tan}^2\theta\mathrm{sec}\theta\mathrm{d}\theta
\]
\[= a^2\mathrm{sec}\theta\mathrm{tan}\theta-a^2\int(\mathrm{sec}^2\theta-1)\mathrm{sec}\theta\mathrm{d}\theta
\]
\[= a^2\mathrm{sec}\theta\mathrm{tan}\theta-a^2\int\mathrm{sec}^3\theta\mathrm{d}\theta+a^2\int\mathrm{sec}\theta\mathrm{d}\theta.
\]
注意到
\[\int\sqrt{x^2+a^2}\mathrm{d}x = a^2\int\mathrm{sec}\theta\mathrm{d}\mathrm{tan}\theta
\]
\[= a^2\int\mathrm{sec}^3\theta\mathrm{d}\theta,
\]
故移项得
\[2a^2\int\mathrm{sec}\theta\mathrm{d}\mathrm{tan}\theta = a^2\mathrm{sec}\theta\mathrm{tan}\theta+a^2\int\mathrm{sec}\theta\mathrm{d}\theta,
\]
从而
\[\int\sqrt{x^2+a^2}\mathrm{d}x = a^2\int\mathrm{sec}\theta\mathrm{d}\mathrm{tan}\theta = \frac{a^2}{2}\mathrm{sec}\theta\mathrm{tan}\theta+\frac{a^2}{2}\int\mathrm{sec}\theta\mathrm{d}\theta
\]
\[= \frac{a^2}{2}\mathrm{sec}\theta\mathrm{tan}\theta+\frac{a^2}{2}\mathrm{ln}\left|\mathrm{tan}\theta+\mathrm{sec}\theta\right|+C
\]
\[= \frac{a^2}{2}\cdot\frac{x}{a}\cdot\frac{\sqrt{x^2+a^2}}{a}+\frac{a^2}{2}\mathrm{ln}\left|\frac{x}{a}+\frac{\sqrt{x^2+a^2}}{a}\right|+C
\]
\[= \frac{x\sqrt{x^2+a^2}}{2}+\frac{a^2}{2}\mathrm{ln}(x+\sqrt{x^2+a^2})+C.\]
(注意\(-\frac{a^2}{2}\mathrm{ln}\left|a\right|\)已并入常数项\(C\)中;由于\(\sqrt{x^2+a^2}+x\)恒为正,故去掉绝对值符号. )
解2. [双元虚圆换元法] 令\(y = \sqrt{x^2+a^2}\),易得\(y^2-x^2 = a^2\),从而\(y\mathrm{d}y=x\mathrm{d}x\).
故
\[\int\sqrt{x^2+a^2}\mathrm{d}x = \int y\mathrm{d}x
\]
\[= xy-\int x\mathrm{d}y
\]
\[= xy-\int\frac{x^2\mathrm{d}x}{y}
\]
\[= xy-\int\frac{(y^2-a^2)\mathrm{d}x}{y}
\]
\[= xy-\int y\mathrm{d}x+a^2\int\frac{\mathrm{d}x}{y},
\]
移项得
\[2\int y\mathrm{d}x = xy+a^2\int\frac{\mathrm{d}x}{y},
\]
\[\int y\mathrm{d}x = \frac{xy}{2}+\frac{a^2}{2}\int\frac{\mathrm{d}x}{y}.
\]
因\(y\mathrm{d}y=x\mathrm{d}x\),故\(\frac{\mathrm{d}x}{y}=\frac{\mathrm{d}y}{x}\),由合比定理有\(\frac{\mathrm{d}x}{y}=\frac{\mathrm{d}y}{x}=\frac{\mathrm{d}x+\mathrm{d}y}{x+y}=\frac{\mathrm{d}(x+y)}{x+y}=\mathrm{d}\mathrm{ln}(x+y)\)(此处绝对值符号可去,原因同解1).
故
\[\int\sqrt{x^2+a^2}\mathrm{d}x = \frac{xy}{2}+\frac{a^2}{2}\int\frac{\mathrm{d}x}{y}
\]
\[= \frac{xy}{2}+\frac{a^2}{2}\mathrm{ln}(x+y)+C.
\]
将\(y = \sqrt{x^2+a^2}\)代入得
\[\int\sqrt{x^2+a^2}\mathrm{d}x = \frac{x\sqrt{x^2+a^2}}{2}+\frac{a^2}{2}\mathrm{ln}(x+\sqrt{x^2+a^2})+C.
\]
方法总结:不定积分的双元换元法
一般地,我们将解不定积分的双元换元法分为两种类型(其中\(C\)为常实数):
- 类型1. 实圆双元:\(x^2+y^2=C \Leftrightarrow x\mathrm{d}x=-y\mathrm{d}y\).
- 类型2. 虚圆双元:\(x^2-y^2=C \Leftrightarrow x\mathrm{d}x=y\mathrm{d}y\).
对于以上两类型双元换元,我们有以下公式(由于常数\(C\)已在上两式中使用,故接下来积分常数用\(C_0\)表示):
1. 双元第一公式
- (1) 对于实圆双元,\(\int\frac{\mathrm{d}x}{y} = \mathrm{arctan}\frac{y}{x}+C_0\);
- (2) 对于虚圆双元,\(\int\frac{\mathrm{d}x}{y} = \mathrm{ln}\left|x+y\right|+C_0\).
证明. (1) 由于\(y\mathrm{d}y=-x\mathrm{d}x\),故
\[y\mathrm{d}x-x\mathrm{d}y=y\mathrm{d}x-x\cdot\frac{x\mathrm{d}x}{y}=\frac{(y^2+x^2)\mathrm{d}x}{y}
\]
故
\[\mathrm{d}x = \frac{y(y\mathrm{d}x-x\mathrm{d}y)}{x^2+y^2}
\]
故
\[\int\frac{\mathrm{d}x}{y} = \int\frac{1}{y}\cdot\frac{y(y\mathrm{d}x-x\mathrm{d}y)}{x^2+y^2}
\]
\[= \int\frac{y\mathrm{d}x-x\mathrm{d}y}{x^2+y^2},
\]
又由于
\[\mathrm{d}(\frac{x}{y}) = \frac{y\mathrm{d}x-x\mathrm{d}y}{y^2},
\]
故
\[\int\frac{\mathrm{d}x}{y} = \int\frac{y^2}{y^2+x^2}\cdot\mathrm{d}(\frac{x}{y})
\]
\[= \int\frac{1}{(\frac{x}{y})^2+1}\cdot\mathrm{d}(\frac{x}{y})
\]
\[= \mathrm{arctan}\frac{x}{y}+C_0.
\]
(2) 因\(y\mathrm{d}y=x\mathrm{d}x\),故\(\frac{\mathrm{d}x}{y}=\frac{\mathrm{d}y}{x}\),由合比定理有\(\frac{\mathrm{d}x}{y}=\frac{\mathrm{d}y}{x}=\frac{\mathrm{d}x+\mathrm{d}y}{x+y}=\frac{\mathrm{d}(x+y)}{x+y}=\mathrm{d}\mathrm{ln}\left|x+y\right|\).
故
\[\int\frac{\mathrm{d}x}{y} = \int\mathrm{d}\mathrm{ln}\left|x+y\right|
\]
\[= \mathrm{ln}\left|x+y\right|+C_0.
\]
2. 双元第三公式
- (1) 对于实圆双元,\(\int\frac{\mathrm{d}x}{y^3} = \frac{1}{y^2+x^2}\cdot\frac{x}{y}+C_0 = \frac{x}{Cy}+C_0\);
- (2) 对于虚圆双元,\(\int\frac{\mathrm{d}x}{y^3} = \frac{1}{y^2-x^2}\cdot\frac{x}{y}+C_0 = -\frac{x}{Cy}+C_0\).
证明. (1) 类似双元第一公式的证法,
\[\int\frac{\mathrm{d}x}{y^3} = \int\frac{1}{y^2}\cdot\frac{\mathrm{d}x}{y}
\]
\[= \int\frac{1}{y^2}\cdot\frac{y\mathrm{d}x-x\mathrm{d}y}{x^2+y^2}
\]
\[= \int\frac{1}{x^2+y^2}\cdot\frac{y\mathrm{d}x-x\mathrm{d}y}{y^2}
\]
\[= \int\frac{1}{x^2+y^2}\cdot\mathrm{d}(\frac{x}{y})
\]
\[= \frac{1}{x^2+y^2}\cdot\frac{x}{y}+C_0
\]
\[= \frac{x}{Cy}+C_0.
\]
(2) 由于
\[x\mathrm{d}x=y\mathrm{d}y,
\]
故
\[\mathrm{d}y=\frac{x\mathrm{d}x}{y},
\]
故
\[y\mathrm{d}x-x\mathrm{d}y = y\mathrm{d}x-x\cdot\frac{x\mathrm{d}x}{y}
\]
\[= \frac{(y^2-x^2)\mathrm{d}x}{y},
\]
故
\[\mathrm{d}x = \frac{y(y\mathrm{d}x-x\mathrm{d}y)}{y^2-x^2},
\]
故
\[\int\frac{\mathrm{d}x}{y^3} = \int\frac{1}{y^3}\cdot\frac{y(y\mathrm{d}x-x\mathrm{d}y)}{y^2-x^2}
\]
\[= \int\frac{y\mathrm{d}x-x\mathrm{d}y}{y^2(y^2-x^2)}
\]
\[= \int\frac{1}{y^2-x^2}\mathrm{d}(\frac{x}{y})
\]
\[= \frac{1}{y^2-x^2}\cdot\frac{x}{y}+C_0
\]
\[= -\frac{x}{Cy}+C_0.
\]
3. 双元第二公式
注:此公式的形式已在例1中解2的过程中给出,此处总结一般情形.
- (1) 对于实圆双元,\(\int y\mathrm{d}x = \frac{xy}{2}+\frac{x^2+y^2}{2}\int\frac{\mathrm{d}x}{y} = \frac{xy}{2}+\frac{C}{2}\int\frac{\mathrm{d}x}{y}\);
- (2) 对于虚圆双元,\(\int y\mathrm{d}x = \frac{xy}{2}-\frac{x^2-y^2}{2}\int\frac{\mathrm{d}x}{y} = \frac{xy}{2}-\frac{C}{2}\int\frac{\mathrm{d}x}{y}\).
这里每一个结论均有两种证法,其中分部积分法即为例1中解2的过程所用形式.
证明. (1) [证法一 - 分部积分法] 由于
\[\int y\mathrm{d}x = xy-\int x\mathrm{d}y
\]
\[= xy-\int x\cdot(-\frac{x\mathrm{d}x}{y})
\]
\[= xy+\int \frac{x^2\mathrm{d}x}{y}
\]
\[= xy+\int \frac{C-y^2}{y}\mathrm{d}x
\]
\[= xy+C\int \frac{\mathrm{d}x}{y}-\int y\mathrm{d}x,
\]
故移项得
\[2\int y\mathrm{d}x = xy+C\int \frac{\mathrm{d}x}{y},
\]
\[\int y\mathrm{d}x = \frac{xy}{2}+\frac{C}{2}\int \frac{\mathrm{d}x}{y}
\]
\[= \frac{xy}{2}+\frac{x^2+y^2}{2}\int \frac{\mathrm{d}x}{y}.
\]
[证法二 - 二分裂项法]
\[\int y\mathrm{d}x = \frac{1}{2}\int y\mathrm{d}x-\frac{1}{2}\int(-y\mathrm{d}x)
\]
\[= \frac{1}{2}\int(x\mathrm{d}y+y\mathrm{d}x)-\frac{1}{2}\int(x\mathrm{d}y-y\mathrm{d}x)
\]
\[= \frac{1}{2}\int\mathrm{d}(xy)+\frac{1}{2}\int(y\mathrm{d}x-x\mathrm{d}y)
\]
\[= \frac{1}{2}xy+\frac{1}{2}\int(y\mathrm{d}x-x(-\frac{x\mathrm{d}y}{y}))
\]
\[= \frac{1}{2}xy+\frac{1}{2}\int\frac{x^2+y^2}{y}\mathrm{d}x
\]
\[= \frac{xy}{2}+\frac{x^2+y^2}{2}\int\frac{\mathrm{d}x}{y}
\]
\[= \frac{xy}{2}+\frac{C}{2}\int\frac{\mathrm{d}x}{y}.
\]
(2) [证法一 - 分部积分法] 由于
\[\int y\mathrm{d}x = xy-\int x\mathrm{d}y
\]
\[= xy-\int x\cdot\frac{x\mathrm{d}x}{y}
\]
\[= xy-\int \frac{x^2\mathrm{d}x}{y}
\]
\[= xy-\int \frac{C+y^2}{y}\mathrm{d}x
\]
\[= xy-C\int \frac{\mathrm{d}x}{y}-\int y\mathrm{d}x,
\]
故移项得
\[2\int y\mathrm{d}x = xy-C\int \frac{\mathrm{d}x}{y},
\]
\[\int y\mathrm{d}x = \frac{xy}{2}-\frac{C}{2}\int \frac{\mathrm{d}x}{y}
\]
\[= \frac{xy}{2}-\frac{x^2-y^2}{2}\int \frac{\mathrm{d}x}{y}.
\]
[证法二 - 二分裂项法]
\[\int y\mathrm{d}x = \frac{1}{2}\int y\mathrm{d}x-\frac{1}{2}\int(-y\mathrm{d}x)
\]
\[= \frac{1}{2}\int(x\mathrm{d}y+y\mathrm{d}x)-\frac{1}{2}\int(x\mathrm{d}y-y\mathrm{d}x)
\]
\[= \frac{1}{2}\int\mathrm{d}(xy)+\frac{1}{2}\int(y\mathrm{d}x-x\mathrm{d}y)
\]
\[= \frac{1}{2}xy+\frac{1}{2}\int(y\mathrm{d}x-x\cdot\frac{x\mathrm{d}y}{y})
\]
\[= \frac{1}{2}xy+\frac{1}{2}\int\frac{y^2-x^2}{y}\mathrm{d}x
\]
\[= \frac{xy}{2}+\frac{y^2-x^2}{2}\int\frac{\mathrm{d}x}{y}
\]
\[= \frac{xy}{2}-\frac{x^2-y^2}{2}\int\frac{\mathrm{d}x}{y}
\]
\[= \frac{xy}{2}+\frac{C}{2}\int\frac{\mathrm{d}x}{y}.
\]
4. 双元点火公式
注:本公式的用途类似于 Wallis 公式,用于降低被积函数的次数以最终化为双元第一公式或双元第三公式的形式并得出待求式的结果.
对于实圆双元与虚圆双元,均有\((1+n)\int x^n\mathrm{d}y = x^ny+Cn\int x^{n-2}\mathrm{d}y\).
证明. 先证实圆双元.
\[\int x^n\mathrm{d}y = x^ny-\int y\mathrm{d}(x^n)
\]
\[= x^ny-n\int yx^{n-1}\mathrm{d}x
\]
\[= x^ny-n\int yx^{n-1}\cdot(-\frac{y\mathrm{d}y}{x})
\]
\[= x^ny+n\int y^2x^{n-2}\mathrm{d}y
\]
\[= x^ny+n\int (C-x^2)x^{n-2}\mathrm{d}y
\]
\[= x^ny+Cn\int x^{n-2}\mathrm{d}y-n\int x^n\mathrm{d}y,
\]
移项即得
\[(1+n)\int x^n\mathrm{d}y = x^ny+Cn\int x^{n-2}\mathrm{d}y.
\]
再证虚圆双元.
\[\int x^n\mathrm{d}y = x^ny-\int y\mathrm{d}(x^n)
\]
\[= x^ny-n\int yx^{n-1}\mathrm{d}x
\]
\[= x^ny-n\int yx^{n-1}\cdot\frac{y\mathrm{d}y}{x}
\]
\[= x^ny-n\int y^2x^{n-2}\mathrm{d}y
\]
\[= x^ny-n\int (x^2-C)x^{n-2}\mathrm{d}y
\]
\[= x^ny+Cn\int x^{n-2}\mathrm{d}y-n\int x^n\mathrm{d}y,
\]
移项即得
\[(1+n)\int x^n\mathrm{d}y = x^ny+Cn\int x^{n-2}\mathrm{d}y.
\]
方法运用:运用双元换元法求解不定积分
例2. 求 \(\int\sqrt{\frac{x-a}{x-b}}\mathrm{d}x\),其中\(a,b\in\mathbb{R}\)为常数.
解. 令\(u = \sqrt{x-a}\),\(v = \sqrt{x-b}\),易得\(u^2-v^2=b-a=C\)为常数(虚元双元),
则
\[\int\sqrt{\frac{x-a}{x-b}}\mathrm{d}x = \int\frac{u}{v}\mathrm{d}(u^2+a)
\]
\[= \int\frac{2u^2\mathrm{d}u}{v}
\]
\[= 2\int\frac{C+v^2}{v}\mathrm{d}u
\]
\[= 2C\int\frac{\mathrm{d}u}{v}+2\int v\mathrm{d}u,
\]
依次代入虚元双元的双元第二、第一公式可得
\[\int\sqrt{\frac{x-a}{x-b}}\mathrm{d}x = 2C\int\frac{\mathrm{d}u}{v}+2(\frac{xy}{2}-\frac{C}{2}\int\frac{\mathrm{d}u}{v})
\]
\[= C\int \frac{\mathrm{d}u}{v}+uv
\]
\[= C\mathrm{ln}\left|u+v\right|+uv+C_0
\]
\[= (b-a)\mathrm{ln}\left|\sqrt{x-a}+\sqrt{x-b}\right|+\sqrt{(x-a)(x-b)}+C_0.
\]
例3. 求 \(\int\sqrt{\frac{x-a}{b-x}}\mathrm{d}x\),其中\(a,b\in\mathbb{R}\)为常数.
解. 令\(u = \sqrt{x-a}\),\(v = \sqrt{b-x}\),易得\(u^2+v^2=b-a=C\)为常数(实元双元),
则
\[\int\sqrt{\frac{x-a}{b-x}}\mathrm{d}x = \int\frac{u}{v}\mathrm{d}(u^2+a)
\]
\[= \int\frac{2u^2\mathrm{d}u}{v}
\]
\[= -2\int u(-\frac{u\mathrm{d}u}{v})
\]
\[= -2\int u\mathrm{d}v
\]
\[= -2(uv-\int v\mathrm{d}u)
\]
\[= 2\int v\mathrm{d}u-2uv,
\]
依次代入实元双元的双元第二、第一公式可得
\[\int\sqrt{\frac{x-a}{b-x}}\mathrm{d}x = 2(\frac{uv}{2}+\frac{C}{2}\int\frac{\mathrm{d}u}{v})-2uv
\]
\[= C\int\frac{\mathrm{d}u}{v}-uv
\]
\[= C\arctan{\frac{u}{v}}-uv+C_0
\]
\[= (b-a)\arctan{\sqrt{\frac{x-a}{b-x}}}-\sqrt{(x-a)(b-x)}+C_0.
\]