高等数学随记 - 一道极限计算题的简化求解
题目
例1. 求\(\lim_{x \to 0} \frac{e(x-2)+2e^{\frac{\ln(x+1)}{x}}}{2x^2}\).
解法一:常规解法,洛必达法则(繁琐,暂略)
解法二:简化解法,利用麦克劳林公式(注意适用条件)
解. 取以下麦克劳林公式:(\(\ln(x+1)\)展开到3次项,\(e^x\)展开到2次项)
\[\ln(x+1) = x-\frac{x^2}{2}+\frac{x^3}{3}+\mathrm{o}(x^3),
\]
\[e^x = 1+x+\frac{x^2}{2}+\mathrm{o}(x^2),
\]
对原式有:
\[\lim_{x \to 0} \frac{e(x-2)+2e^{\frac{\ln(x+1)}{x}}}{2x^2} = \lim_{x \to 0} \frac{e(x-2)+2e^{\frac{x-\frac{x^2}{2}+\frac{x^3}{3}+\mathrm{o}(x^3)}{x}}}{2x^2}
\]
\[= \lim_{x \to 0} \frac{e(x-2)+2e^{1-\frac{x}{2}+\frac{x^2}{3}+\mathrm{o}(x^2)}}{2x^2}
\]
\[= \lim_{x \to 0} \frac{e(x-2)+2e\cdot e^{-\frac{x}{2}+\frac{x^2}{3}+\mathrm{o}(x^2)}}{2x^2}
\]
\[= \lim_{x \to 0} \frac{e(x-2)+2e(1-\frac{x}{2}+\frac{x^2}{3}+\mathrm{o}(x^2)+\frac{(-\frac{x}{2}+\frac{x^2}{3}+\mathrm{o}(x^2))^2}{2}+\mathrm{o}((-\frac{x}{2}+\frac{x^2}{3}+\mathrm{o}(x^2))^2))}{2x^2}
\]
\[= \lim_{x \to 0} \frac{2e(\frac{x^2}{3}+\frac{x^2}{8})+\mathrm{o}(x^2)}{2x^2}
\]
\[= \lim_{x \to 0} \frac{2e\cdot\frac{11}{24}x^2}{2x^2}
\]
\[= \frac{11}{24}e.
\]