Unique Paths II <leetcode>
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
算法:一开始理解错了,以为到一个点可以从上下左右,写了一个非常复杂的代码,后来自己感觉不对,上网上一查才发现,原来还是到一个点只能从上或左,那这道题就非常简单了,思路和第一个版本是一样的,只是增加了障碍物,所以计算的时候,考虑一下障碍物就行了,代码如下(动态规划):
1 class Solution { 2 public: 3 int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) { 4 vector<vector<int>> f(obstacleGrid.size(),vector<int>(obstacleGrid[0].size())); 5 f[0][0]=obstacleGrid[0][0]==0?1:0; 6 for(int i=1;i<f.size();i++) 7 { 8 f[i][0]=obstacleGrid[i][0]==0?f[i-1][0]:0; 9 } 10 for(int i=1;i<obstacleGrid[0].size();i++) 11 { 12 f[0][i]=obstacleGrid[0][i]==0?f[0][i-1]:0; 13 } 14 15 for(int i=1;i<obstacleGrid.size();i++) 16 { 17 for(int j=1;j<obstacleGrid[0].size();j++) 18 { 19 f[i][j]=obstacleGrid[i][j]==0?(f[i-1][j]+f[i][j-1]):0; 20 } 21 } 22 return f[f.size()-1][f[0].size()-1]; 23 } 24 };