NMS python 实现

NMS

NMS 的工作流程如下,其实非常简单粗暴:

1. 按照一定的置信度阈值,删除置信度过低的检测框,对检测框进行初步筛选,如设置为 0.5,上图中没有检测框会被初步过滤掉;

2. 从当前边界框列表中选取置信度最大的边界框,加入结果列表,同时计算其他边界框与它的 IOU,若 IOU 超过设定的 IOU 阈值,则删除该检测框;

3. 重复上面的第二步,直到边界框列表为空,得到结果列表。

def py_cpu_nms(dets, thresh): 
"""Pure Python NMS baseline."""
 #x1、y1、x2、y2、以及score赋值 
 x1 = dets[:, 0] 
 y1 = dets[:, 1] 
 x2 = dets[:, 2] 
 y2 = dets[:, 3] 
 scores = dets[:, 4] 
 #每一个检测框的面积 
 areas = (x2 - x1 + 1) * (y2 - y1 + 1) 
 #按照score置信度降序排序 
 order = scores.argsort()[::-1] 
 keep = [] #保留的结果框集合 
 while order.size > 0: 
 i = order[0] 
 keep.append(i) #保留该类剩余box中得分最高的一个 
 #得到相交区域,左上及右下 
 xx1 = np.maximum(x1[i], x1[order[1:]]) 
 yy1 = np.maximum(y1[i], y1[order[1:]]) 
 xx2 = np.minimum(x2[i], x2[order[1:]])
 yy2 = np.minimum(y2[i], y2[order[1:]]) 
 #计算相交的面积,不重叠时面积为0 
 w = np.maximum(0.0, xx2 - xx1 + 1) 
 h = np.maximum(0.0, yy2 - yy1 + 1) 
 inter = w * h 
 #计算IoU:重叠面积 /(面积1+面积2-重叠面积) 
 ovr = inter / (areas[i] + areas[order[1:]] - inter) 
 #保留IoU小于阈值的box 
 inds = np.where(ovr <= thresh)[0] 
 order = order[inds + 1] #因为ovr数组的长度比order数组少一个,所以这里要将所有下标后移一位 
 return keep

 

posted @ 2023-03-27 17:55  一泓喜悲vv  阅读(94)  评论(0编辑  收藏  举报