Fork me on GitHub
返回顶部
跳到底部

最低公共祖先(LCA)

对于一颗给定的二叉树,对任意两个节点,求它们的最低的公共祖先。

下面就是这样一道题,给定一棵树的前序和中序遍历(我们知道这颗树就是确定的了),对于任两个节点,求它们的最低公共主祖先。

PAT题目:1151 LCA in a Binary Tree (30 分)

#include<iostream>
#include<cstdio>
#include<map>
using namespace std;

int* pre,*in;
map<int,int> pos;

void LCA(int preRoot,int inL,int inR,int u,int v){
	if(inL>inR) return;
	//inRoot,u,v:根节点,u,v在中序遍历的位置
	int inRoot=pos[pre[preRoot]],uInIdx=pos[u],vInIdx=pos[v];
	if(uInIdx<inRoot&&vInIdx<inRoot){//u,v在中序遍历中的位置小于根 
		LCA(preRoot+1,inL,inRoot-1,u,v);
	}else if((uInIdx<inRoot&&vInIdx>inRoot)
			||(uInIdx>inRoot&&vInIdx<inRoot)){
			printf("LCA of %d and %d is %d.\n",u,v,in[inRoot]);
	}else if(uInIdx>inRoot&&vInIdx>inRoot){
		LCA(preRoot+1+(inRoot-inL),inRoot+1,inR,u,v);
	}else{
		if(uInIdx==inRoot){
			printf("%d is an ancestor of %d.\n",u,v);
		}else if(vInIdx==inRoot){
			printf("%d is an ancestor of %d.\n",v,u);
		}
	}
}
int main(){
	int m,n;
	scanf("%d%d",&m,&n);
	in=new int[n+1];
	pre=new int[n+1];
	for(int i=1;i<=n;i++){
		scanf("%d",&in[i]);
		pos[in[i]]=i;
	}
	for(int i=1;i<=n;i++){
		scanf("%d",&pre[i]);
	}
	while(m--){
		int a,b;
		scanf("%d%d",&a,&b);
		if(pos[a]==0&&pos[b]==0){
			printf("ERROR: %d and %d are not found.\n",a,b);
		}else if(pos[a]==0){
			printf("ERROR: %d is not found.\n",a);
		}else if(pos[b]==0){
			printf("ERROR: %d is not found.\n",b);
		}else{
			LCA(1,1,n,a,b);
		}
	}
	return 0;
}

上面是对于一颗普通的二叉树,如果这颗二叉树又是一个二叉搜索树,那么还有如下的方法可用,而且是更好的方式,用上面的方法就会超时。

题目:1143 Lowest Common Ancestor (30 分)

#include <iostream>
#include <algorithm>
#include <unordered_set>
#define MAXSIZE 10001
using namespace std;

struct Node{
	int val;
	Node *lchild, *rchild;
	Node(int v){
		val = v;
		lchild = rchild = NULL;
	}
};

int pre[MAXSIZE] = {0}, in[MAXSIZE] = {0};

Node * inPreCreateTree(int inL, int inR, int preL, int preR){
	if( preL > preR ){
		return NULL;
	}

	int val = pre[preL];
	Node * root = new Node(val);

	int mid;
	for( mid = inL; mid <= inR; mid++ ){
		if( in[mid] == val ){
			break;
		}
	}
	int numLeft = mid - inL;
	root->lchild = inPreCreateTree(inL, mid-1, preL+1, preL+numLeft);
	root->rchild = inPreCreateTree(mid+1, inR, preL+numLeft+1, preR);
	return root;
}

void LCA(Node * root, int lVal, int rVal, bool positionChanged){
	if( root != NULL ){
		if( root->val > lVal && root->val < rVal ){
			if( positionChanged == false ){
				cout<<"LCA of "<<lVal<<" and "<<rVal<<" is "<<root->val<<".\n";
			}else{
				cout<<"LCA of "<<rVal<<" and "<<lVal<<" is "<<root->val<<".\n";
			}
		}else if( root->val == lVal ){
			cout<<lVal<<" is an ancestor of "<<rVal<<".\n";
		}else if( root->val == rVal ){
			cout<<rVal<<" is an ancestor of "<<lVal<<".\n";
		}else if( root->val > rVal ){
			LCA(root->lchild, lVal, rVal, positionChanged);
		}else{
			LCA(root->rchild, lVal, rVal, positionChanged);
		}
	}
}

int main(){
//	ios::sync_with_stdio(false);
//	cin.tie(0);

	int m, n;
	cin>>m>>n;

	int val;
	unordered_set<int> s;
	for( int i = 0; i < n; i++ ){
		cin>>val;
		in[i] = pre[i] = val;
		s.insert(val);
	}

	sort(in, in+n);

	Node * root = inPreCreateTree(0, n-1, 0, n-1);

	int u, v;
	for( int i = 0; i < m; i++ ){
		cin>>u>>v;
		if( s.find(u) == s.end() && s.find(v) == s.end() ){
			cout<<"ERROR: "<<u<<" and "<<v<<" are not found.\n";
		}else if( s.find(u) == s.end() ){
			cout<<"ERROR: "<<u<<" is not found.\n";
		}else if( s.find(v) == s.end() ){
			cout<<"ERROR: "<<v<<" is not found.\n";
		}else{
			bool positionChanged = false;
			if( u >= v ){
				swap(u, v);
				positionChanged = true;
			}
			LCA(root, u, v, positionChanged);
		}
	}

	return 0;
}

方法2:

该方法对于这题会有一个测试点超时

#include<iostream>
#include<algorithm>
#include<map>
using namespace std;

const int maxn=10010;
int pre[maxn],in[maxn];
map<int,int> pos;

void LCA(int preRoot,int inL,int inR,int u,int v){
	if(inL>inR) return;
	int uInIdx=pos[u],vInIdx=pos[v];
	int inRoot=pos[pre[preRoot]];
	if(uInIdx<inRoot&&vInIdx<inRoot){
		LCA(preRoot+1,inL,inRoot-1,u,v);
	}else if(uInIdx<inRoot&&vInIdx>inRoot||(uInIdx>inRoot&&vInIdx<inRoot)){
		printf("LCA of %d and %d is %d.\n",u,v,pre[preRoot]);
	}else if(uInIdx>inRoot&&vInIdx>inRoot){
		LCA(preRoot+(inRoot-inL)+1,inRoot+1,inR,u,v);
	}else{
		if(uInIdx=inRoot){
			printf("%d is an ancestor of %d.\n",u,v);
		}else if(vInIdx==inRoot){
			printf("%d is an ancestor of %d.\n",v,u);
		}
	}
}
int main(){
	int m,n;
	cin>>m>>n;
	for(int i=1;i<=n;i++){
		cin>>pre[i];
		in[i]=pre[i];	
	}
	sort(in+1,in+n+1);
	for(int i=1;i<=n;i++){
		pos[in[i]]=i;
	}
	while(m--){
		int a,b;
		cin>>a>>b;
		if(pos[a]==0&&pos[b]==0){
			printf("ERROR: %d and %d are not found.\n",a,b);
		}else if(pos[a]==0){
			printf("ERROR: %d is not found.\n",a);
		}else if(pos[b]==0){
			printf("ERROR: %d is not found.\n",b);
		}else{
			LCA(1,1,n,a,b);
		}
	}
	return 0;
}
posted @ 2019-02-21 10:28  sqmax  阅读(484)  评论(0编辑  收藏  举报