二叉树的遍历
先序
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
static List<Integer> res;
public List<Integer> preorderTraversal(TreeNode root) {
res = new ArrayList<>();
// preorderRecursion(root);
// preorder(root);
// preorderMorris(root);
// return res;
preorder3(root);
Collections.reverse(res);
return res;
}
// 假先序
public static void preorder3(TreeNode root) {
if (root == null) return;
preorder3(root.right);
preorder3(root.left);
res.add(root.val);
}
// 保存右节点
public static void perorder2(TreeNode root) {
if (root == null) return;
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while (!stack.isEmpty()) {
TreeNode cur = stack.pop();
res.add(cur.val);
if (cur.right != null) stack.push(cur.right);
if (cur.left != null) stack.push(cur.left);
}
}
// Morris
public static void preorderMorris(TreeNode root) {
if (root == null) return;
TreeNode cur = root;
while (cur != null) {
if (cur.left != null) {
// 左子树不空,遍历左子树,找到左子树的最右侧节点
TreeNode rightMost = cur.left;
while (rightMost.right != null && rightMost.right != cur) {
rightMost = rightMost.right;
}
// 最右侧节点的右指针指向null或者cur
if (rightMost.right == null) {
// 有左右孩子的节点第一次被访问
res.add(cur.val);
// 把最右侧节点的right指向cur
rightMost.right = cur;
// 访问左子树
cur = cur.left;
} else {
// 有左右孩子的节点第二次被访问
// 恢复
rightMost.right = null;
// 遍历右子树
cur = cur.right;
}
} else {
// 只有右孩子的节点只会被访问一次
res.add(cur.val);
// 遍历右子树
cur = cur.right;
}
}
}
// 非递归
public static void preorder(TreeNode root) {
Stack<TreeNode> stack = new Stack<>();
while (!stack.isEmpty() || root != null) {
while (root != null) {
res.add(root.val);
stack.add(root);
root = root.left;
}
root = stack.pop();
root = root.right;
}
}
// 递归
public static void preorderRecursion(TreeNode root) {
if (root == null)
return;
res.add(root.val);
preorderRecursion(root.left);
preorderRecursion(root.right);
}
}
中序
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
static List<Integer> res;
public List<Integer> inorderTraversal(TreeNode root) {
res = new ArrayList<>();
// inorderRecursion(root);
// inorder(root);
inorderMorris(root);
return res;
}
public static void inorderMorris(TreeNode root) {
if (root == null) return;
TreeNode cur = root;
while (cur != null) {
if (cur.left != null) {
TreeNode rightMost = cur.left;
while (rightMost.right != null && rightMost.right != cur) {
rightMost = rightMost.right;
}
if (rightMost.right == null) {
rightMost.right = cur;
cur = cur.left;
} else {
// 有左右孩子的节点第二次被经过,左子树都遍历完了,访问节点
res.add(cur.val);
rightMost.right = null;
cur = cur.right;
}
} else {
// 只有右孩子的节点只会被经过一次,直接访问
res.add(cur.val);
cur = cur.right;
}
}
}
public static void inorder(TreeNode root) {
if (root == null) return;
Stack<TreeNode> stack = new Stack<>();
while (!stack.isEmpty() || root != null) {
while (root != null) {
stack.push(root);
root = root.left;
}
root = stack.pop();
res.add(root.val);
root = root.right;
}
}
public static void inorderRecursion(TreeNode root) {
if (root == null) return;
inorderRecursion(root.left);
res.add(root.val);
inorderRecursion(root.right);
}
}
后序
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
static List<Integer> res;
public List<Integer> postorderTraversal(TreeNode root) {
res = new ArrayList<>();
// postorderRecursion(root);
// postorder(root);
postorderMorris(root);
return res;
}
public static void postorderMorris(TreeNode root) {
TreeNode cur = root;
while (cur != null) {
if (cur.left != null) {
TreeNode rightMost = cur.left;
while (rightMost.right != null && rightMost.right != cur) {
rightMost = rightMost.right;
}
if (rightMost.right == null) {
rightMost.right = cur;
cur = cur.left;
} else {
rightMost.right = null;
// 一个节点被第二次经过的时候,自底向上访问左子树的所有的右节点
visitReversedRightTree(cur.left);
cur = cur.right;
}
} else {
cur = cur.right;
}
}
// 再遍历一次
visitReversedRightTree(root);
}
// 自底向上访问右节点(访问反转后的右节点)
public static void visitReversedRightTree(TreeNode root) {
// 反转右子树
TreeNode reversed = reverseRightTree(root);
TreeNode cur = reversed;
while (cur != null) {
res.add(cur.val);
cur = cur.right;
}
// 反转回去
reverseRightTree(reversed);
}
// 把右子树反转
public static TreeNode reverseRightTree(TreeNode root) {
TreeNode pre = null;
TreeNode cur = root;
while (cur != null) {
TreeNode nextRight = cur.right;
cur.right = pre;
pre = cur;
cur = nextRight;
}
return pre;
}
public static void postorder(TreeNode root) {
Stack<TreeNode> stack = new Stack<>();
TreeNode pre = null;
while (!stack.isEmpty() || root != null) {
while (root != null) {
stack.push(root);
root = root.left;
}
root = stack.pop();
if (root.right == null || root.right == pre) {
// 没有右子树或者右子树已经被访问过了
res.add(root.val);
// pre始终指向上一个被访问过的节点
pre = root;
root = null;
} else {
// 访问右子树前,先把当前节点重新入栈
stack.push(root);
root = root.right;
}
}
}
public static void postorderRecursion(TreeNode root) {
if (root == null) return;
postorderRecursion(root.left);
postorderRecursion(root.right);
res.add(root.val);
}
}