Binary Tree Postorder Traversal leetcode java
题目:
Given a binary tree, return the postorder traversal of its nodes' values.
For example:
Given binary tree {1,#,2,3}
,
1 \ 2 / 3
return [3,2,1]
.
Note: Recursive solution is trivial, could you do it iteratively?
题解:
递归方法代码:
2 if(root==null)
3 return;
4
5 helper(root.left,re);
6 helper(root.right,re);
7 re.add(root.val);
8 }
9 public ArrayList<Integer> postorderTraversal(TreeNode root) {
10 ArrayList<Integer> re = new ArrayList<Integer>();
11 if(root==null)
12 return re;
13 helper(root,re);
14 return re;
15 }
非递归方法代码:
引用自Code ganker:http://blog.csdn.net/linhuanmars/article/details/22009351
“接下来是迭代的做法,本质就是用一个栈来模拟递归的过程,但是相比于Binary
Tree Inorder Traversal和Binary
Tree Preorder Traversal,后序遍历的情况就复杂多了。我们需要维护当前遍历的cur指针和前一个遍历的pre指针来追溯当前的情况(注意这里是遍历的指针,并不是真正按后序访问顺序的结点)。具体分为几种情况:
(1)如果pre的左孩子或者右孩子是cur,那么说明遍历在往下走,按访问顺序继续,即如果有左孩子,则是左孩子进栈,否则如果有右孩子,则是右孩子进栈,如果左右孩子都没有,则说明该结点是叶子,可以直接访问并把结点出栈了。
(2)如果反过来,cur的左孩子是pre,则说明已经在回溯往上走了,但是我们知道后序遍历要左右孩子走完才可以访问自己,所以这里如果有右孩子还需要把右孩子进栈,否则说明已经到自己了,可以访问并且出栈了。
(3)如果cur的右孩子是pre,那么说明左右孩子都访问结束了,可以轮到自己了,访问并且出栈即可。
算法时间复杂度也是O(n),空间复杂度是栈的大小O(logn)。实现的代码如下(代码引用自:http://www.programcreek.com/2012/12/leetcode-solution-of-iterative-binary-tree-postorder-traversal-in-java/):”
2
3 ArrayList<Integer> lst = new ArrayList<Integer>();
4
5 if(root == null)
6 return lst;
7
8 Stack<TreeNode> stack = new Stack<TreeNode>();
9 stack.push(root);
10
11 TreeNode prev = null;
12 while(!stack.empty()){
13 TreeNode curr = stack.peek();
14
15 // go down the tree.
16 //check if current node is leaf, if so, process it and pop stack,
17 //otherwise, keep going down
18 if(prev == null || prev.left == curr || prev.right == curr){
19 //prev == null is the situation for the root node
20 if(curr.left != null){
21 stack.push(curr.left);
22 }else if(curr.right != null){
23 stack.push(curr.right);
24 }else{
25 stack.pop();
26 lst.add(curr.val);
27 }
28
29 //go up the tree from left node
30 //need to check if there is a right child
31 //if yes, push it to stack
32 //otherwise, process parent and pop stack
33 }else if(curr.left == prev){
34 if(curr.right != null){
35 stack.push(curr.right);
36 }else{
37 stack.pop();
38 lst.add(curr.val);
39 }
40
41 //go up the tree from right node
42 //after coming back from right node, process parent node and pop stack.
43 }else if(curr.right == prev){
44 stack.pop();
45 lst.add(curr.val);
46 }
47
48 prev = curr;
49 }
50
51 return lst;
52 }