二分查找法
二分查找方法
二分查找经常用来在有序的数列查找某个特定的位置。
因此,应用二分查找法,这个数列必须包含以下特征:
- 存储在数组中
- 有序排列
二分查找方法不适用于链表,因为链表方法需要遍历,应用二分查找法意义不大。
一般情况下,我们默认数组是单调递增数列,且无重复元素。(有重复元素的题应该如何解决)
二分查找方法递归和非递归实现
第一种是递归方法实现,递归方法一般走的比较深,容易超时:
1 public int binarySearch(int [] A, int low, int high, int target){
2 if (low > high)
3 return -1;
4
5 int mid = (low + high)/2;
6 if (A[mid]> target)
7 return binarySearch(array, low, mid -1, target);
8 if (array[mid]< target)
9 return binarySearch(array, mid+1, high, target);
10
11 if (A[mid] == target)
12 return mid;
13 }
2 if (low > high)
3 return -1;
4
5 int mid = (low + high)/2;
6 if (A[mid]> target)
7 return binarySearch(array, low, mid -1, target);
8 if (array[mid]< target)
9 return binarySearch(array, mid+1, high, target);
10
11 if (A[mid] == target)
12 return mid;
13 }
第二种是非递归实现方法,更常用一些:
1 public int binarySearch(int[] A, int low, int high, int target){
2 if(low > high)
3 return -1;
4
5 while(low<=high){
6 int mid = low+high/2;
7 if(A[mid] == target)
8 return mid;
9 if(A[mid] > target)
10 high = mid-1;
11 if(A[mid] < target)
12 low = mid+1;
13 }
14 return -1;
15 }
2 if(low > high)
3 return -1;
4
5 while(low<=high){
6 int mid = low+high/2;
7 if(A[mid] == target)
8 return mid;
9 if(A[mid] > target)
10 high = mid-1;
11 if(A[mid] < target)
12 low = mid+1;
13 }
14 return -1;
15 }
Rotated Sorted Array
这是二分查找方法的一个变种,在leetcode中出现过。
它是有序数组,取期中某一个数为轴,将其之前的所有数都轮转到数组的末尾所得。比如{7, 11, 13, 17, 2, 3, 5}就是一个轮转后的有序数组。非严格意义上讲,有序数组也属于轮转后的有序数组——我们取首元素作为轴进行轮转。
1 public int SearchInRotatedSortedArray(int [] array, int low, int high, int target)
2 {
3 while(low <= high)
4 {
5 int mid = (low + high) / 2;
6 if (target < array[mid])
7 if (array[mid] < array[high])//the higher part is sorted
8 high = mid - 1; //the target would only be in lower part
9 else //the lower part is sorted
10 if(target < array[low])//the target is less than all elements in low part
11 low = mid + 1;
12 else
13 high = mid - 1;
14
15 else if(array[mid] < target)
16 if (array[low] < array[mid])// the lower part is sorted
17 low = mid + 1; //the target would only be in higher part
18 else //the higher part is sorted
19 if (array[high] < target)//the target is larger than all elements in higher part
20 high = mid - 1;
21 else
22 low = mid + 1;
23 else //if(array[mid] == target)
24 return mid;
25 }
26
27 return -1;
28 }
2 {
3 while(low <= high)
4 {
5 int mid = (low + high) / 2;
6 if (target < array[mid])
7 if (array[mid] < array[high])//the higher part is sorted
8 high = mid - 1; //the target would only be in lower part
9 else //the lower part is sorted
10 if(target < array[low])//the target is less than all elements in low part
11 low = mid + 1;
12 else
13 high = mid - 1;
14
15 else if(array[mid] < target)
16 if (array[low] < array[mid])// the lower part is sorted
17 low = mid + 1; //the target would only be in higher part
18 else //the higher part is sorted
19 if (array[high] < target)//the target is larger than all elements in higher part
20 high = mid - 1;
21 else
22 low = mid + 1;
23 else //if(array[mid] == target)
24 return mid;
25 }
26
27 return -1;
28 }
二分查找缺陷
二分查找法的O(log n)让它成为十分高效的算法。不过它的缺陷却也是那么明显的。就在它的限定之上:
必须有序,我们很难保证我们的数组都是有序的。当然可以在构建数组的时候进行排序,可是又落到了第二个瓶颈上:它必须是数组。
数组读取效率是O(1),可是它的插入和删除某个元素的效率却是O(n)。因而导致构建有序数组变成低效的事情。
解决这些缺陷问题更好的方法应该是使用二叉查找树了,最好自然是平衡二叉树了,自能高效的(O(n log n))构建有序元素集合,又能如同二分查找法一样快速(O(log n))的搜寻目标数。
二分查找其他应用
1. 寻找上下界
2. 寻找范围
本文基于:http://www.cnblogs.com/ider/archive/2012/04/01/binary_search.html