- 数据挖掘中决策树C4.5预测算法实现(半成品,还要写规则后煎支及对非离散数据信息增益计算),下一篇博客讲原理
- package org.struct.decisiontree;
-
- import java.util.ArrayList;
- import java.util.Arrays;
- import java.util.List;
- import java.util.TreeSet;
-
-
-
-
- public class DecisionTreeBaseC4p5 {
-
-
-
-
- private DecisionTreeNode root;
-
-
-
-
- private boolean[] visable;
-
- private static final int NOT_FOUND = -1;
-
- private static final int DATA_START_LINE = 1;
-
- private Object[] trainingArray;
-
- private String[] columnHeaderArray;
-
-
-
-
- private int nodeIndex;
-
-
-
-
- @SuppressWarnings("boxing")
- public static void main(String[] args) {
- Object[] array = new Object[] {
- new String[] { "age", "income", "student", "credit_rating", "buys_computer" },
- new String[] { "youth", "high", "no", "fair", "no" },
- new String[] { "youth", "high", "no", "excellent", "no" },
- new String[] { "middle_aged", "high", "no", "fair", "yes" },
- new String[] { "senior", "medium", "no", "fair", "yes" },
- new String[] { "senior", "low", "yes", "fair", "yes" },
- new String[] { "senior", "low", "yes", "excellent", "no" },
- new String[] { "middle_aged", "low", "yes", "excellent", "yes" },
- new String[] { "youth", "medium", "no", "fair", "no" },
- new String[] { "youth", "low", "yes", "fair", "yes" },
- new String[] { "senior", "medium", "yes", "fair", "yes" },
- new String[] { "youth", "medium", "yes", "excellent", "yes" },
- new String[] { "middle_aged", "medium", "no", "excellent", "yes" },
- new String[] { "middle_aged", "high", "yes", "fair", "yes" },
- new String[] { "senior", "medium", "no", "excellent", "no" },
- };
-
- DecisionTreeBaseC4p5 tree = new DecisionTreeBaseC4p5();
- tree.create(array, 4);
- System.out.println("===============END PRINT TREE===============");
- System.out.println("===============DECISION RESULT===============");
-
- }
-
-
-
-
-
- public void forecast(String[] printData, DecisionTreeNode node) {
- int index = getColumnHeaderIndexByName(node.nodeName);
- if (index == NOT_FOUND) {
- System.out.println(node.nodeName);
- }
- DecisionTreeNode[] childs = node.childNodesArray;
- for (int i = 0; i < childs.length; i++) {
- if (childs[i] != null) {
- if (childs[i].parentArrtibute.equals(printData[index])) {
- forecast(printData, childs[i]);
- }
- }
- }
- }
-
-
-
-
-
- public void create(Object[] array, int index) {
- this.trainingArray = Arrays.copyOfRange(array, DATA_START_LINE,
- array.length);
- init(array, index);
- createDecisionTree(this.trainingArray);
- printDecisionTree(root);
- }
-
-
-
-
-
- @SuppressWarnings("boxing")
- public Object[] getMaxGain(Object[] array) {
- Object[] result = new Object[2];
- double gain = 0;
- int index = -1;
-
- for (int i = 0; i < visable.length; i++) {
- if (!visable[i]) {
-
- double value = gainRatio(array, i, this.nodeIndex);
- System.out.println(value);
- if (gain < value) {
- gain = value;
- index = i;
- }
- }
- }
- result[0] = gain;
- result[1] = index;
-
- if (index != -1) {
- visable[index] = true;
- }
- return result;
- }
-
-
-
-
- public void createDecisionTree(Object[] array) {
- Object[] maxgain = getMaxGain(array);
- if (root == null) {
- root = new DecisionTreeNode();
- root.parentNode = null;
- root.parentArrtibute = null;
- root.arrtibutesArray = getArrtibutesArray(((Integer) maxgain[1])
- .intValue());
- root.nodeName = getColumnHeaderNameByIndex(((Integer) maxgain[1])
- .intValue());
- root.childNodesArray = new DecisionTreeNode[root.arrtibutesArray.length];
- insertDecisionTree(array, root);
- }
- }
-
-
-
-
-
- public void insertDecisionTree(Object[] array, DecisionTreeNode parentNode) {
- String[] arrtibutes = parentNode.arrtibutesArray;
- for (int i = 0; i < arrtibutes.length; i++) {
- Object[] pickArray = pickUpAndCreateSubArray(array, arrtibutes[i],
- getColumnHeaderIndexByName(parentNode.nodeName));
- Object[] info = getMaxGain(pickArray);
- double gain = ((Double) info[0]).doubleValue();
- if (gain != 0) {
- int index = ((Integer) info[1]).intValue();
- DecisionTreeNode currentNode = new DecisionTreeNode();
- currentNode.parentNode = parentNode;
- currentNode.parentArrtibute = arrtibutes[i];
- currentNode.arrtibutesArray = getArrtibutesArray(index);
- currentNode.nodeName = getColumnHeaderNameByIndex(index);
- currentNode.childNodesArray = new DecisionTreeNode[currentNode.arrtibutesArray.length];
- parentNode.childNodesArray[i] = currentNode;
- insertDecisionTree(pickArray, currentNode);
- } else {
- DecisionTreeNode leafNode = new DecisionTreeNode();
- leafNode.parentNode = parentNode;
- leafNode.parentArrtibute = arrtibutes[i];
- leafNode.arrtibutesArray = new String[0];
- leafNode.nodeName = getLeafNodeName(pickArray,this.nodeIndex);
- leafNode.childNodesArray = new DecisionTreeNode[0];
- parentNode.childNodesArray[i] = leafNode;
- }
- }
- }
-
-
-
-
- public void printDecisionTree(DecisionTreeNode node) {
- System.out.println(node.nodeName);
- DecisionTreeNode[] childs = node.childNodesArray;
- for (int i = 0; i < childs.length; i++) {
- if (childs[i] != null) {
- System.out.println(childs[i].parentArrtibute);
- printDecisionTree(childs[i]);
- }
- }
- }
-
-
-
-
-
-
-
- public void init(Object[] dataArray, int index) {
- this.nodeIndex = index;
-
- this.columnHeaderArray = (String[]) dataArray[0];
- visable = new boolean[((String[]) dataArray[0]).length];
- for (int i = 0; i < visable.length; i++) {
- if (i == index) {
- visable[i] = true;
- } else {
- visable[i] = false;
- }
- }
- }
-
-
-
-
-
-
-
- public Object[] pickUpAndCreateSubArray(Object[] array, String arrtibute,
- int index) {
- List<String[]> list = new ArrayList<String[]>();
- for (int i = 0; i < array.length; i++) {
- String[] strs = (String[]) array[i];
- if (strs[index].equals(arrtibute)) {
- list.add(strs);
- }
- }
- return list.toArray();
- }
-
-
-
-
-
-
-
-
- public double gain(Object[] array, int index, int nodeIndex) {
- int[] counts = separateToSameValueArrays(array, nodeIndex);
- String[] arrtibutes = getArrtibutesArray(index);
- double infoD = infoD(array, counts);
- double infoaD = infoaD(array, index, nodeIndex, arrtibutes);
- return infoD - infoaD;
- }
-
-
-
-
-
-
- public int[] separateToSameValueArrays(Object[] array, int nodeIndex) {
- String[] arrti = getArrtibutesArray(nodeIndex);
- int[] counts = new int[arrti.length];
- for (int i = 0; i < counts.length; i++) {
- counts[i] = 0;
- }
- for (int i = 0; i < array.length; i++) {
- String[] strs = (String[]) array[i];
- for (int j = 0; j < arrti.length; j++) {
- if (strs[nodeIndex].equals(arrti[j])) {
- counts[j]++;
- }
- }
- }
- return counts;
- }
-
-
-
-
-
-
-
-
-
- public double gainRatio(Object[] array,int index,int nodeIndex){
- double gain = gain(array,index,nodeIndex);
- int[] counts = separateToSameValueArrays(array, index);
- double splitInfo = splitInfoaD(array,counts);
- if(splitInfo != 0){
- return gain/splitInfo;
- }
- return 0;
- }
-
-
-
-
-
-
-
-
- public double infoD(Object[] array, int[] counts) {
- double infoD = 0;
- for (int i = 0; i < counts.length; i++) {
- infoD += DecisionTreeUtil.info(counts[i], array.length);
- }
- return infoD;
- }
-
-
-
-
-
-
-
-
- public double splitInfoaD(Object[] array, int[] counts) {
- return infoD(array, counts);
- }
-
-
-
-
-
-
-
-
-
- public double infoaD(Object[] array, int index, int nodeIndex,
- String[] arrtibutes) {
- double sv_total = 0;
- for (int i = 0; i < arrtibutes.length; i++) {
- sv_total += infoDj(array, index, nodeIndex, arrtibutes[i],
- array.length);
- }
- return sv_total;
- }
-
-
-
-
-
-
-
-
-
-
- public double infoDj(Object[] array, int index, int nodeIndex,
- String arrtibute, int allTotal) {
- String[] arrtibutes = getArrtibutesArray(nodeIndex);
- int[] counts = new int[arrtibutes.length];
- for (int i = 0; i < counts.length; i++) {
- counts[i] = 0;
- }
-
- for (int i = 0; i < array.length; i++) {
- String[] strs = (String[]) array[i];
- if (strs[index].equals(arrtibute)) {
- for (int k = 0; k < arrtibutes.length; k++) {
- if (strs[nodeIndex].equals(arrtibutes[k])) {
- counts[k]++;
- }
- }
- }
- }
-
- int total = 0;
- double infoDj = 0;
- for (int i = 0; i < counts.length; i++) {
- total += counts[i];
- }
- for (int i = 0; i < counts.length; i++) {
- infoDj += DecisionTreeUtil.info(counts[i], total);
- }
- return DecisionTreeUtil.getPi(total, allTotal) * infoDj;
- }
-
-
-
-
-
- @SuppressWarnings("unchecked")
- public String[] getArrtibutesArray(int index) {
- TreeSet<String> set = new TreeSet<String>(new SequenceComparator());
- for (int i = 0; i < trainingArray.length; i++) {
- String[] strs = (String[]) trainingArray[i];
- set.add(strs[index]);
- }
- String[] result = new String[set.size()];
- return set.toArray(result);
- }
-
-
-
-
-
- public String getColumnHeaderNameByIndex(int index) {
- for (int i = 0; i < columnHeaderArray.length; i++) {
- if (i == index) {
- return columnHeaderArray[i];
- }
- }
- return null;
- }
-
-
-
-
-
- public String getLeafNodeName(Object[] array,int nodeIndex) {
- if (array != null && array.length > 0) {
- String[] strs = (String[]) array[0];
- return strs[nodeIndex];
- }
- return null;
- }
-
-
-
-
-
- public int getColumnHeaderIndexByName(String name) {
- for (int i = 0; i < columnHeaderArray.length; i++) {
- if (name.equals(columnHeaderArray[i])) {
- return i;
- }
- }
- return NOT_FOUND;
- }
- }
- package org.struct.decisiontree;
-
-
-
-
- public class DecisionTreeNode {
-
- DecisionTreeNode parentNode;
-
- String parentArrtibute;
-
- String nodeName;
-
- String[] arrtibutesArray;
-
- DecisionTreeNode[] childNodesArray;
-
- }
- package org.struct.decisiontree;
-
-
-
-
- public class DecisionTreeUtil {
-
-
-
-
-
-
-
-
- public static double info(int x, int total) {
- if (x == 0) {
- return 0;
- }
- double x_pi = getPi(x, total);
- return -(x_pi * logYBase2(x_pi));
- }
-
-
-
-
-
-
-
- public static double logYBase2(double y) {
- return Math.log(y) / Math.log(2);
- }
-
-
-
-
-
-
-
-
- public static double getPi(int x, int total) {
- return x / (double) total;
- }
-
- }
- package org.struct.decisiontree;
-
- import java.util.Comparator;
-
-
-
-
-
- @SuppressWarnings("unchecked")
- public class SequenceComparator implements Comparator {
-
- public int compare(Object o1, Object o2) throws ClassCastException {
- String str1 = (String) o1;
- String str2 = (String) o2;
- return str1.compareTo(str2);
- }
- }
posted @
2011-10-06 14:50
springMVC3.1例子
阅读(
2084)
评论()
编辑
收藏
举报