tensorflow非线性回归

该程序有输入层,中间层和输出层

运行环境:ubuntun

(menpo) queen@queen-X550LD:~/Downloads/py $ python nonliner_regression.py

# -*- coding: UTF-8 -*-
#定义一个神经网络:输入层一个元素,中间层10个神经元,输出层1个元素
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf

#使用numpy生成200个随机点
x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis]
noise = np.random.normal(0,0.02,x_data.shape)
y_data = np.square(x_data)+noise

#定义两个placeholder
x = tf.placeholder(tf.float32,[None,1])
y = tf.placeholder(tf.float32,[None,1])

#定义神经网络中间层
Weights_L1 = tf.Variable(tf.random_normal([1,10])) #输入层1个元素,中间层10个神经元
biases_L1 = tf.Variable(tf.zeros([1,10]))
Wx_plus_b_L1 = tf.matmul(x,Weights_L1) + biases_L1
L1 = tf.tanh(Wx_plus_b_L1)

#定义神经网络输出层
Weights_L2 = tf.Variable(tf.random_normal([10,1])) #中间层10个神经元,输出层1个元素
biases_L2 = tf.Variable(tf.zeros([1,1]))
Wx_plus_b_L2 = tf.matmul(L1,Weights_L2) + biases_L2
prediction = tf.tanh(Wx_plus_b_L2)

#二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))

#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

with tf.Session() as sess:
    #变量初始化
    sess.run(tf.global_variables_initializer())
    for _ in range(2000):
        sess.run(train_step,feed_dict={x:x_data,y:y_data})

    #获取预测值
    prediction_value = sess.run(prediction,feed_dict={x:x_data})
    #画图
    plt.figure()
    plt.scatter(x_data,y_data)
    plt.plot(x_data,prediction_value,'r-',lw=5)
    plt.show()

运行结果图

posted @ 2020-04-19 16:33  小孢子  阅读(271)  评论(0编辑  收藏  举报