HDU 6214 Smallest Minimum Cut 最小割,权值编码

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6214

题意:求边数最小的割。

解法:

建边的时候每条边权 w = w * (E + 1) + 1;
这样得到最大流 maxflow / (E + 1) ,最少割边数 maxflow % (E + 1)

道理很简单,如果原先两类割边都是最小割,那么求出的最大流相等
但边权变换后只有边数小的才是最小割了

 乘(E+1)是为了保证边数叠加后依然是余数,不至于影响求最小割的结果

因为假设最小割=k,那么现在新图的最小割为k*(E+1)+p,p为割的边数,本质上是,原来你割一条边,需要代价,

由于你要求边数最小 所以你多割一条边,就多一的代价,但是这个代价不足以影响到原来的代价。
原来割一条边,代价xi,现在割一条边,代价xi*A+1,只要让A>m+1,m为边数,即使割了所有的边,自己加上去的代价也就m
 
在QQ群里还看到一种解法,就是跑2次Dinic,这个显然是不对的吧。。最小割一定是满流,但是漫流的不一定是最小割吧。。。
 
#include <bits/stdc++.h>
using namespace std;
const int maxn = 410;
const int maxm = 50010;
const int inf = 0x3f3f3f3f;
struct G
{
    int v, cap, next;
    G() {}
    G(int v, int cap, int next) : v(v), cap(cap), next(next) {}
} E[maxm];
int p[maxn], T;
int d[maxn], temp_p[maxn], qw[maxn]; //d顶点到源点的距离标号,temp_p当前狐优化,qw队列
void init()
{
    memset(p, -1, sizeof(p));
    T = 0;
}
void add(int u, int v, int cap)
{
    E[T] = G(v, cap, p[u]);
    p[u] = T++;
    E[T] = G(u, 0, p[v]);
    p[v] = T++;
}
bool bfs(int st, int en, int n)
{
    int i, u, v, head, tail;
    for(i = 0; i <= n; i++) d[i] = -1;
    head = tail = 0;
    d[st] = 0;
    qw[tail] = st;
    while(head <= tail)
    {
        u = qw[head++];
        for(i = p[u]; i + 1; i = E[i].next)
        {
            v = E[i].v;
            if(d[v] == -1 && E[i].cap > 0)
            {
                d[v] = d[u] + 1;
                qw[++tail] = v;
            }
        }
    }
    return (d[en] != -1);
}
int dfs(int u, int en, int f)
{
    if(u == en || f == 0) return f;
    int flow = 0, temp;
    for(; temp_p[u] + 1; temp_p[u] = E[temp_p[u]].next)
    {
        G& e = E[temp_p[u]];
        if(d[u] + 1 == d[e.v])
        {
            temp = dfs(e.v, en, min(f, e.cap));
            if(temp > 0)
            {
                e.cap -= temp;
                E[temp_p[u] ^ 1].cap += temp;
                flow += temp;
                f -= temp;
                if(f == 0)  break;
            }
        }
    }
    return flow;
}
int dinic(int st, int en, int n)
{
    int i, ans = 0;
    while(bfs(st, en, n))
    {
        for(i = 0; i <= n; i++) temp_p[i] = p[i];
        ans += dfs(st, en, inf);
    }
    return ans;
}

int main()
{
    int T, n, m;
    scanf("%d", &T);
    while(T--)
    {
        scanf("%d %d", &n,&m);
        init();
        int s, t;
        scanf("%d %d", &s, &t);
        for(int i=1; i<=m; i++){
            int u, v, w;
            scanf("%d %d %d", &u,&v,&w);
            add(u, v, w*(m+1)+1);
        }
        int ans = dinic(s, t, n+1);
        printf("%d\n", ans%(m+1));
    }
    return 0;
}

 

posted @ 2017-09-18 19:48  zxycoder  阅读(221)  评论(0编辑  收藏  举报