HDU 4010 Query on The Trees (动态树)

题目链接:https://vjudge.net/problem/HDU-4010

题意:(切割,合并子树,路径上所有点的点权增加一个值,查询路径上点权最大值)

解法:LCT动态树,学习地址:http://blog.csdn.net/jeremygjy/article/details/51078087

 

记录模板:

#include <bits/stdc++.h>
using namespace std;
//动态维护一组深林,要求支持下面的操作
//link(a,b):如果a,b不在同一子树内,则通过在a,b连边的方式,连接这两颗子树
//cut(a,b):如果a,b在同一颗子树中,且a!=b,则将a视为这颗子树的根以后,切断b与其父亲节点的连接
//Add(a,b,w):如果a,b在同一颗子树中,则将a,b之间的路径上的所有点的点权加w
//query(a,b):如果a,b在同一颗子树中,返回a,b路径上的点权最大值
const int maxn = 300010;
int ch[maxn][2], pre[maxn], key[maxn];
int add[maxn],rev[maxn],Max[maxn];
bool rt[maxn];
void Update_Add(int r, int d){
    if(!r) return;
    key[r] += d;
    add[r] += d;
    Max[r] += d;
}
void Update_Rev(int r){
    if(!r) return;
    swap(ch[r][0], ch[r][1]);
    rev[r] ^= 1;
}
void push_down(int r){
    if(add[r]){
        Update_Add(ch[r][0], add[r]);
        Update_Add(ch[r][1],add[r]);
        add[r]=0;
    }
    if(rev[r]){
        Update_Rev(ch[r][0]);
        Update_Rev(ch[r][1]);
        rev[r] = 0;
    }
}
void push_up(int r){
    Max[r] = max(max(Max[ch[r][0]],Max[ch[r][1]]),key[r]);
}
void Rotate(int x){
    int y=pre[x],kind=ch[y][1]==x;
    ch[y][kind]=ch[x][!kind];
    pre[ch[y][kind]]=y;
    pre[x]=pre[y];
    pre[y]=x;
    ch[x][!kind]=y;
    if(rt[y])
        rt[y]=false,rt[x]=true;
    else
        ch[pre[x]][ch[pre[x]][1]==y]=x;
    push_up(y);
}
void P(int r){
    if(!rt[r]) P(pre[r]);
    push_down(r);
}
void Splay(int r){
    P(r);
    while(!rt[r]){
        int f=pre[r],ff=pre[f];
        if(rt[f]) Rotate(r);
        else if((ch[ff][1]==f)==(ch[f][1]==r))
            Rotate(f),Rotate(r);
        else Rotate(r),Rotate(r);
    }
    push_up(r);
}
int Access(int x){
    int y=0;
    for(;x;x=pre[y=x]){
        Splay(x);
        rt[ch[x][1]] = true;
        rt[ch[x][1]=y] = false;
        push_up(x);
    }
    return y;
}
//判断是否是同根(真实的树,非splay)
bool judge(int u, int v){
    while(pre[u]) u=pre[u];
    while(pre[v]) v=pre[v];
    return u==v;
}
//使r成为它所在树的根
void mroot(int r){
    Access(r);
    Splay(r);
    Update_Rev(r);
}
//调用后u是原来u和v的lca,v和ch[u][1]分别存着lca的2个儿子
//原来u和v所在的两颗指树
void lca(int &u, int &v){
    Access(v), v=0;
    while(u){
        Splay(u);
        if(!pre[u]) return;
        rt[ch[u][1]] = true;
        rt[ch[u][1]=v] = false;
        push_up(u);
        u = pre[v = u];
    }
}
void link(int u, int v){
    if(judge(u,v)){
        puts("-1");
        return;
    }
    mroot(u);
    pre[u]=v;
}
//使u成为u所在树的根,并且v和它父亲的边断开
void cut(int u, int v){
    if(u==v || !judge(u, v)){
        puts("-1");
        return;
    }
    mroot(u);
    Splay(v);
    pre[ch[v][0]] = pre[v];
    pre[v] = 0;
    rt[ch[v][0]] = true;
    ch[v][0] = 0;
    push_up(v);
}
void ADD(int u, int v, int w){
    if(!judge(u,v)){
        puts("-1");
        return;
    }
    lca(u, v);
    Update_Add(ch[u][1], w);
    Update_Add(v, w);
    key[u] += w;
    push_up(u);
}
void query(int u, int v){
    if(!judge(u,v)){
        puts("-1");
        return;
    }
    lca(u, v);
    printf("%d\n", max(max(Max[v],Max[ch[u][1]]),key[u]));
}
struct EDGE{
    int to, next;
    EDGE(){}
}edge[maxn*2];
int head[maxn], edgecnt;
void addedge(int u, int v){
    edge[edgecnt].to=v,edge[edgecnt].next=head[u],head[u]=edgecnt++;
}
void dfs(int u){
    for(int i=head[u];~i;i=edge[i].next){
        int v=edge[i].to;
        if(pre[v]!=0) continue;
        pre[v]=u;
        dfs(v);
    }
}

int main()
{
    int n, q, u, v, op;
    while(scanf("%d", &n) != EOF)
    {
        edgecnt = 0;
        for(int i=0; i<=n; i++){
            head[i]=-1;
            pre[i]=0;
            ch[i][0]=ch[i][1]=0;
            rev[i]=0;
            add[i]=0;
            rt[i]=true;
        }
        Max[0]=-2000000000;
        for(int i=1; i<n; i++){
            scanf("%d %d", &u,&v);
            addedge(u, v);
            addedge(v, u);
        }
        for(int i=1; i<=n; i++){
            scanf("%d", &key[i]);
            Max[i] = key[i];
        }
        scanf("%d", &q);
        pre[1] = -1;
        dfs(1);
        pre[1] = 0;
        while(q--)
        {
            scanf("%d", &op);
            if(op == 1){
                int x,y;
                scanf("%d%d", &x,&y);
                link(x,y);
            }
            else if(op==2){
                int x,y;
                scanf("%d%d", &x,&y);
                cut(x,y);
            }
            else if(op==3){
                int w,x,y;
                scanf("%d%d%d",&w,&x,&y);
                ADD(x,y,w);
            }
            else{
                int x,y;
                scanf("%d%d",&x,&y);
                query(x,y);
            }
        }
        printf("\n");
    }
    return 0;
}

 

posted @ 2017-09-04 19:38  zxycoder  阅读(116)  评论(0编辑  收藏  举报