2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6152 Friend-Graph 暴暴暴暴力
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6152
题意:判定一个无向图是否有三个点的团或者三个点的独立集。
解法:Ramsey theorem,n >= 6 直接输出 Bad 否则暴力。我是直接暴力,加个break优化就好了。
#include <bits/stdc++.h> using namespace std; typedef long long LL; const int maxn = 3e3+3; bool w[maxn][maxn]; bool check(int n){ for(int i=1; i<=n; i++){ for(int j=i+1; j<=n; j++){ for(int k=j+1; k<=n; k++){ if(w[i][j]==w[i][k]&&w[i][k]==w[j][k]&&w[i][j]==w[j][k]){ return true; } } } } return false; } struct FastIO { static const int S = 1310720; int wpos; char wbuf[S]; FastIO() : wpos(0) {} inline int xchar() { static char buf[S]; static int len = 0, pos = 0; if(pos == len) pos = 0, len = fread(buf, 1, S, stdin); if(pos == len) exit(0); return buf[pos ++]; } inline unsigned long long xuint() { int c = xchar(); unsigned long long x = 0; while(c <= 32) c = xchar(); for(; '0' <= c && c <= '9'; c = xchar()) x = x * 10 + c - '0'; return x; } inline long long xint() { long long s = 1; int c = xchar(), x = 0; while(c <= 32) c = xchar(); if(c == '-') s = -1, c = xchar(); for(; '0' <= c && c <= '9'; c = xchar()) x = x * 10 + c - '0'; return x * s; } inline void xstring(char *s) { int c = xchar(); while(c <= 32) c = xchar(); for(; c > 32; c = xchar()) * s++ = c; *s = 0; } inline double xdouble() { bool sign = 0; char ch = xchar(); double x = 0; while(ch <= 32) ch = xchar(); if(ch == '-') sign = 1, ch = xchar(); for(; '0' <= ch && ch <= '9'; ch = xchar()) x = x * 10 + ch - '0'; if(ch == '.') { double tmp = 1; ch = xchar(); for(; ch >= '0' && ch <= '9'; ch = xchar()) tmp /= 10.0, x += tmp * (ch - '0'); } if(sign) x = -x; return x; } inline void wchar(int x) { if(wpos == S) fwrite(wbuf, 1, S, stdout), wpos = 0; wbuf[wpos ++] = x; } inline void wint(long long x) { if(x < 0) wchar('-'), x = -x; char s[24]; int n = 0; while(x || !n) s[n ++] = '0' + x % 10, x /= 10; while(n--) wchar(s[n]); } inline void wstring(const char *s) { while(*s) wchar(*s++); } inline void wdouble(double x, int y = 6) { static long long mul[] = {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000LL, 100000000000LL, 1000000000000LL, 10000000000000LL, 100000000000000LL, 1000000000000000LL, 10000000000000000LL, 100000000000000000LL}; if(x < -1e-12) wchar('-'), x = -x; x *= mul[y]; long long x1 = (long long) floorl(x); if(x - floor(x) >= 0.5) ++x1; long long x2 = x1 / mul[y], x3 = x1 - x2 * mul[y]; wint(x2); if(y > 0) { wchar('.'); for(size_t i = 1; i < y && x3 * mul[i] < mul[y]; wchar('0'), ++i); wint(x3); } } ~FastIO() { if(wpos) fwrite(wbuf, 1, wpos, stdout), wpos = 0; } } io; int main() { int T,n,m; T = io.xint(); while(T--) { n = io.xint(); for(int i=1; i<n; i++){ for(int j=i+1; j<=n; j++){ m = io.xint(); if(m == 1) w[i][j]=w[j][i]=false; else w[i][j]=w[j][i]=true; } } if(check(n)){ puts("Bad Team!"); } else{ puts("Great Team!"); } } return 0; }