变量选择
变量选择是在面对高维数据时需要处理的问题,有三类处理的方法,分别是最优子集的搜索、变量的稀疏和压缩、降维和特征重构。
- 最优子集的搜索L:一类处理方法是从备选的变量集合里面筛选出对于我们的分析目的有更大贡献的子集,常用的方法由最优子集法、BIC\AIC准则选择法、随机森林等。
- 变量的压缩和稀疏:常用的方法是LASSO,有各种各样的变体,例如传统的LASSO、弹性网回归、自适应LASSO、SCAD等
变量选择是在面对高维数据时需要处理的问题,有三类处理的方法,分别是最优子集的搜索、变量的稀疏和压缩、降维和特征重构。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 如何调用 DeepSeek 的自然语言处理 API 接口并集成到在线客服系统
· 【译】Visual Studio 中新的强大生产力特性
· 2025年我用 Compose 写了一个 Todo App