线性筛1

筛法

线性筛素数

保证每次只被自己最小的质因数筛到。。

void yych()
{
	for(int  i = 2; i <= maxn; i ++)
	{
		if(!vis[i])	prime[++tot] = i;
		for(int j = 1; j <= tot&&i * prime[j] <= maxn; j ++)
		{
			vis[i * prime[j]] = 1;
			if(i%prime[j] == 0)	break;
	     }
}

筛phi

欧拉函数 \(phi(i)\) 为小于i 的正整数中与\(i\)互质的数的个数, 然后有公式

\(\phi(x) = x*(1-\dfrac{1}{p_1})*(1-\dfrac{1}{p_2})*...*(1-\dfrac{1}{p_k})\)

​ 然后考虑怎么筛, 还是分三种情况

1.\(i\)是质数 则显然 \(\color{green}{phi(i) =(i-1)}\)

2.\(i\) 能整除质数\(p\), 则说明\(i\) 中含有\(p\) 这个质数, 则后面的质数不会改变,只是在本身上乘上\(p\);

\(\phi(i) = i*(1-\dfrac{1}{p_1})*(1-\dfrac{1}{p_2})*...*(1-\dfrac{1}{p_k})\)

\(\phi(i*p) = i*p*(1-\dfrac{1}{p_1})*(1-\dfrac{1}{p_2})*...*(1-\dfrac{1}{p_k})\)

So, \(\color{green}{phi(i*p) = phi(i)*p}\)

3.\(i\) 不能整除质数\(p\), 说明\(i\)中不含\(p\)这个因数, 也就是原来多乘了\(p*(1-\dfrac{1}{p})\) , 化简得\((p-1)\);

\(\phi(i) = i*(1-\dfrac{1}{p_1})*(1-\dfrac{1}{p_2})*...*(1-\dfrac{1}{p_k})\)

\(\phi(i*p) = i*p*(1-\dfrac{1}{p})*(1-\dfrac{1}{p_1})*(1-\dfrac{1}{p_2})*...*(1-\dfrac{1}{p_k})\)

\(= i*(p-1)*(1-\dfrac{1}{p_1})*(1-\dfrac{1}{p_2})*...*(1-\dfrac{1}{p_k})\)

So, \(\color{green}{phi(i*p) = phi(i)*(p-1)}\);

void yych()
{
	phi[1] = 1;
	for(int  i = 2; i <= maxn; i ++)
	{
		if(!vis[i])
		{
			prime[++tot] = i;
			phi[i] = (i-1);
		}
		for(int j = 1; j <= tot&&prime[j]*i <= maxn; j ++)
		{
			vis[i * prime[j]] = 1;
			if(i%prime[j] == 0)
			{
                  phi[i * prime[j]] = phi[i] * prime[j];
				break;
			}
			else
				phi[i * prime[j]] = phi[i] * (prime[j] - 1);
		}
	}
}

筛mu

可以放心,和反演无关

根据莫比乌斯函数定义来筛:

根据唯一分解定理

\(i = p_1^{k_1}*p_2^{k_2}*p_3^{k_3}...p_q^{k_q}\)

对于一个数\(i\), $$\mu(i)=\begin{cases} 1, &(i=1)\0, & (\exists k, k>1)\(-1)^q ,&(\forall k, k<=1) \end{cases} $$

​ 1.则对于一个质数\(i\), 显然

\(\color{green}{\mu(i)=-1}\),

​ 2.若\(i\)能整除\(p\), 则\(i\)\(p\) 的原来指数至少为1, \(i*p\)\(p\)指数就一定大于1

\(\color{green}{\mu(i*p)=0}\)

​ 3.若\(i\)不能整除\(p\), 则\(i\)中原来没有\(p\) 这个质数, \(i*p\) 相当于多了一个质数, 则\(q+=1\), 奇变偶, 偶变奇。。。。

\(\color{green}{\mu(i*p)=-\mu(i)}\)

void yych()
{
    mu[1] = 1;
	for(int  i = 2; i <= maxn; i ++)
	{
		if(!vis[i])
		{
			prime[++tot] = i;
			mu[i] = -1;
		}
		for(int j = 1; j <= tot&&prime[j]*i <= maxn; j ++)
		{
			vis[i * prime[j]] = 1;
			if(i%prime[j] == 0)
			{
				mu[i * prime[j]] = 0;
				break;
			}
			else
		       mu[i * prime[j]] = -mu[i];
		}
	}
}
posted @ 2019-09-30 07:27  spbv587  阅读(249)  评论(1编辑  收藏  举报