在这片梦想之地,不堪回首的过去像泡沫一样散去,不愿面对的明天也永|

PassName

园龄:3年1个月粉丝:32关注:16

[动态规划] 区间 dp

区间 dp

石子合并

将区间长度 len 作为 dp 的阶段

f[l][r] 表示把最初的第 l 堆到第 r 堆石子合并成一堆,需要消耗的最少体力。

合并代价就是这两堆石子的质量和,这里可以用前缀和直接计算,设 s[i] 表示前 i 堆石子的质量和。

状态转移方程:

f[l][r]=minlk<r{f[l][k]+f[k+1][r]+(s[r]s[l1])}

计算 max 同理

注意,由于需要破环为链,不能直接将答案返回 f[1][n] ,要在计算过程中更新答案。

int f[N][N];
int n;
int a[N], s[N];

int cost(int l, int r){return s[r] - s[l - 1];}

int dp_min()
{
    int minn = inf;
    for (rint len = 1; len < n; len++)
    {
    	for (rint l = 1; l <= 2 * n - len; l++)
    	{
    		int r = l + len;
    		f[l][r] = inf;
    		for (rint k = l; k < r; k++) f[l][r] = min(f[l][r], f[l][k] + f[k + 1][r] + cost(l, r));
			if (len + 1 == n) minn = min(minn, f[l][r]);
		}
	}
	return minn;
}

int dp_max()
{
	int maxx = 0;
	for (rint len = 1; len < n; len++)
	{
		for (rint l = 1; l <= 2 * n - len; l++)
		{
			int r = l + len;
			f[l][r] = 0;
			for (rint k = l; k < r; k++) f[l][r] = max(f[l][r], f[l][k] + f[k + 1][r] + cost(l, r));
			if (len + 1 == n) maxx = max(maxx, f[l][r]);
		}
	}
	return maxx;
}

signed main()
{
    cin >> n;
    for (rint i = 1; i <= n * 2; i++)
    {
    	if (i <= n)
		{
			cin >> a[i];
			a[i + n] = a[i];
		}
    	s[i] = s[i - 1] + a[i];
	}
	cout << dp_min() << endl << dp_max() << endl;
	return 0;
}

P4342 [IOI1998] Polygon

本题要求的是区间合并的最大得分,很明显是区间 dp 问题。

把被删除的边逆时针方向的顶点称为 "第 1 个顶点",依此类推。然后用区间 dp 常见的状态表示。

f[l][r] 表示把第 lr 个顶点合成的最大得分。

状态表示没有什么问题,但是状态转移出现了问题,我们并不能通过 f[l][k]f[k+1][r] 来得到 f[l][r]

有可能 l ~ k 的某种得分是负数 ak+1 ~ r 的某种得分也是负数 b,但是 ab 可能比 f[l][k]f[k+1][r] 更大。

由此得出状态转移的错误性,那么我们应该如何得出 f[l][r] 呢,首先分析 l r 的最大得分有几种可能得到:

  1. max(l ~ k) + max(k + 1 ~ r)
  2. max(l ~ k) * max(k + 1 ~ r)
  3. min(l ~ k) * min(k + 1 ~ r) (负负得正)

通过分析可以发现,要想得出 f[l][r] 需要知道子状态的最大值和最小值。

f[l][r][0] 表示把第 lr 个顶点合成的最大得分,f[l][r][1] 表示把第 lr 个顶点合成的最小得分

那么我们每次转移都需要转移最大值和最小值,上面已经分析最大值的转移,再分析一下最小值的转移:

  1. min(l ~ k) + min(k + 1 ~ r)
  2. min(l ~ k) * min(k + 1 ~ r)
  3. max(l ~ k) * max(k + 1 ~ r)
  4. max(l ~ k) * min(k + 1 ~ r)
  5. min(l ~ k) * max(k + 1 ~ r)

起始状态为 f[i][i][0]=f[i][i][1]=a[i],结束状态为 f[1][n][0]

以上就是全部的状态转移,另外还需要考虑第一步要删除哪条边。这里采用拆环成链的技巧,例如,将 - a - b - c - d - 拆成 a - b - c - d - a - b - c - d 这时枚举所有以前一半为端点的链,就能找出所有的情况。

a - b - c - dd - a

b - c - d - aa - b

c - d - a - bb - c

d - a - b - cc - d

最终枚举所有的链从中取最大值即可。

int n;
int a[N]; 
//原序列
char op[N]; 
//操作序列
//f[l][r][0] 表示把第 l 到 r 个顶点合成的最大得分
//f[l][r][1] 表示把第 l 到 r 个顶点合成的最小得分
int f[N][N][2];

signed main()
{
    cin >> n;

    //接收原序列、操作序列
    for (rint i = 1; i <= 2 * n; i++)
        if (!(i % 2)) cin >> a[i / 2];
        else scanf("%s", &op[(i + 1) / 2]);

    //初始化
    for (rint l = 1; l <= 2 * n; l++)
        for (rint r = 1; r <= 2 * n; r++)
            f[l][r][0] = -inf, f[l][r][1] = inf;

    //拆环成链
    for (rint i = 1; i <= n; i++)
    {
        a[i + n] = a[i];
        op[i + n] = op[i];
        f[i][i][0] = f[i + n][i + n][0] = f[i][i][1] = f[i + n][i + n][1] = a[i]; 
    }

    for (rint len = 1; len < n; len++) 
    {
        for (rint l = 1; l + len <= 2 * n; l++)
        {
            int r = l + len; 
            for (rint k = l; k < r; k++) 
                if (op[k + 1] == 't') //加法
                {
                    f[l][r][0] = max(f[l][r][0], f[l][k][0] + f[k + 1][r][0]);
                    f[l][r][1] = min(f[l][r][1], f[l][k][1] + f[k + 1][r][1]);
                }
                else //乘法
                {
                    f[l][r][0] = max(f[l][r][0], f[l][k][0] * f[k + 1][r][0]);
                    f[l][r][0] = max(f[l][r][0], f[l][k][1] * f[k + 1][r][1]);
                    f[l][r][1] = min(f[l][r][1], f[l][k][1] * f[k + 1][r][1]);
                    f[l][r][1] = min(f[l][r][1], f[l][k][1] * f[k + 1][r][0]);
                    f[l][r][1] = min(f[l][r][1], f[l][k][0] * f[k + 1][r][1]);
                    f[l][r][1] = min(f[l][r][1], f[l][k][0] * f[k + 1][r][0]);
                }
        }		
	}

    //枚举所有链取最大值
    int res = -inf;
    for (rint i = 1; i <= n; i++) res = max(res, f[i][i + n - 1][0]);
    cout << res << endl;

    //找出所有能取到最大值的顶点
    for (rint i = 1; i <= n; i++)
        if (res == f[i][i + n - 1][0])
            cout << i << " ";

    return 0;
}

AcWing 284. 金字塔

f[l][r] 表示子串 s[l ~ r] 对应多少种可能的树形结构。

然后考虑对区间的划分,根据区间的划分不同,也可能得出不同的树形结构。

s[l ~ r] 对应一棵子树,那么 s[l]s[r] 就应该是树根,s[l+1]s[r1] 就是进入和离开子树时的节点。
除此之外,[l,r] 包含的每棵更深的子树都对应一个子问题,会产生 [l,r] 中的一段,相邻两段之间还有途经树根产生
的一个字符。由于 [l,r] 包含的子树个数可能不止两个,如果我们朴素的枚举划分点的数量和所有划分点的位置,那么
时间复杂度会高得离谱。

因此我们可以换种思路,尝试把 s[l ~ r] 分成两部分,每部分可由若干棵子树组成,不过这样可能会产生重复计数。

如果每段都可以由多棵子树构成,如 "ABABABA",划分成 "A|BAB|A|B|A" 和 "A|B|A|BAB|A",其中 "BAB" 都能产生 "B|A|B"
两棵子树,那么这两种划分方式最终就会变成同一种结果。

为了解决不重不漏,我们可以只考虑子串 [l ~ r] 的第一棵子树时由哪一段构成的,枚举划分点k,令子串 s[l+1 ~ k1]
构成 [l,r] 的第一棵子树,s[k ~ r] 构成 [l,r] 的剩余部分(其他子树)。

如果 k 不相同,那么子串 s[l+1 ~ k1] 代表的子树的大小也不相同,就不可能产生重复计算的结构。

由此得出状态转移方程,当 s[l]s[r]

f[l][r]=0

s[l]=s[r]

f[l][r]=f[l+1][r1]+l+2kr2,s[l]=s[k]f[l+1][k1]f[k][r]

起始状态为 f[i][i]=1,目标状态为 f[1][n]

char str[N];
int f[N][N]; 
//表示子串 s[l ~ r] 对应多少种可能的树形结构

int dfs(int l, int r)
{
    if (l > r) return 0; //不合法的状态方案数为 0
    if (l == r) return 1; //一个节点无法划分,方案数为 1
    if (f[l][r] != -1) return f[l][r]; //如果当前区间已经计算过,直接返回结果
    if (str[l] != str[r]) return 0; //不是一棵完整的子树,方案数为 0
    //到这说明当前区间没计算过
    f[l][r] = 0; //最开始方案数为 0
    for (rint k = l + 2; k <= r; k++) //枚举划分点
        f[l][r] = (f[l][r] + dfs(l + 1, k - 1) * dfs(k, r)) % mod; //累加方案数
    return f[l][r]; //将 [l ~ r] 的方案数往回传
}

signed main()
{
    scanf("%s", str + 1);
    memset(f, -1, sizeof f); //记忆化搜索初始化,没有计算过的状态默认为 -1
    cout << dfs(1, strlen(str + 1)) << endl; //递归计算整个区间
    return 0;
}

本文作者:PassName

本文链接:https://www.cnblogs.com/spaceswalker/p/18199018

版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 2.5 中国大陆许可协议进行许可。

posted @   PassName  阅读(4)  评论(0编辑  收藏  举报
点击右上角即可分享
微信分享提示
评论
收藏
关注
推荐
深色
回顶
收起