最近公共祖先
简介
首先是最近公共祖先的概念(什么是最近公共祖先?):
在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点。
换句话说,就是两个点在这棵树上距离最近的公共祖先节点。
所以LCA主要是用来处理当两个点仅有唯一一条确定的最短路径时的路径。
有人可能会问:那他本身或者其父亲节点是否可以作为祖先节点呢?
答案是肯定的,很简单,按照人的亲戚观念来说,你的父亲也是你的祖先,而LCA还可以将自己视为祖先节点。
举个例子吧,如下图所示4和5的最近公共祖先是2,5和3的最近公共祖先是1,2和1的最近公共祖先是1。
下文中的模板将会以bfs``dfs``tarjan
作为示例。
模板
祖孙询问
给定一棵包含 n 个节点的有根无向树,节点编号互不相同,但不一定是 1∼n。
有 m 个询问,每个询问给出了一对节点的编号 x 和 y,询问 x 与 y 的祖孙关系。
输入格式
输入第一行包括一个整数 表示节点个数;
接下来 n 行每行一对整数 a 和 b,表示 a 和 b 之间有一条无向边。如果 b 是 −1,那么 a 就是树的根;
第 n+2 行是一个整数 m 表示询问个数;
接下来 m 行,每行两个不同的正整数 x 和 y,表示一个询问。
输出格式
对于每一个询问,若 x 是 y 的祖先则输出 1,若 y 是 x 的祖先则输出 2,否则输出 0。
数据范围
1≤n,m≤4×104,
1≤每个节点的编号≤4×104
输入样例:
10
234 -1
12 234
13 234
14 234
15 234
16 234
17 234
18 234
19 234
233 19
5
234 233
233 12
233 13
233 15
233 19
输出样例:
1
0
0
0
2
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 40010, M = N * 2;
int n, m;
int h[N], e[M], ne[M], idx;
int depth[N], fa[N][16];
int q[N];
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
void bfs(int root)
{
memset(depth, 0x3f, sizeof depth);
depth[0] = 0, depth[root] = 1;
int hh = 0, tt = 0;
q[0] = root;
while (hh <= tt)
{
int t = q[hh ++ ];
for (int i = h[t]; ~i; i = ne[i])
{
int j = e[i];
if (depth[j] > depth[t] + 1)
{
depth[j] = depth[t] + 1;
q[ ++ tt] = j;
fa[j][0] = t;
for (int k = 1; k <= 15; k ++ )
fa[j][k] = fa[fa[j][k - 1]][k - 1];
}
}
}
}
int lca(int a, int b)
{
if (depth[a] < depth[b]) swap(a, b);
for (int k = 15; k >= 0; k -- )
if (depth[fa[a][k]] >= depth[b])
a = fa[a][k];
if (a == b) return a;
for (int k = 15; k >= 0; k -- )
if (fa[a][k] != fa[b][k])
{
a = fa[a][k];
b = fa[b][k];
}
return fa[a][0];
}
int main()
{
scanf("%d", &n);
int root = 0;
memset(h, -1, sizeof h);
for (int i = 0; i < n; i ++ )
{
int a, b;
scanf("%d%d", &a, &b);
if (b == -1) root = a;
else add(a, b), add(b, a);
}
bfs(root);
scanf("%d", &m);
while (m -- )
{
int a, b;
scanf("%d%d", &a, &b);
int p = lca(a, b);
if (p == a) puts("1");
else if (p == b) puts("2");
else puts("0");
}
return 0;
}
询问距离
给出 n 个点的一棵树,多次询问两点之间的最短距离。
注意:
边是无向的。
所有节点的编号是 1,2,…,n。
输入格式
第一行为两个整数 n 和 m。n 表示点数,m 表示询问次数;
下来 n−1 行,每行三个整数 x,y,k,表示点 x 和点 y 之间存在一条边长度为 k;
再接下来 m 行,每行两个整数 x,y,表示询问点 x 到点 y 的最短距离。
树中结点编号从 1 到 n。
输出格式
共 m 行,对于每次询问,输出一行询问结果。
数据范围
2≤n≤104,
1≤m≤2×104,
0<k≤100,
1≤x,y≤n
输入样例1:
2 2
1 2 100
1 2
2 1
输出样例1:
100
100
输入样例2:
3 2
1 2 10
3 1 15
1 2
3 2
输出样例2:
10
25
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
typedef pair<int, int> PII;
const int N = 10010, M = N * 2;
int n, m;
int h[N], e[M], w[M], ne[M], idx;
int dist[N];
int p[N];
int res[M];
int st[N];
vector<PII> query[N]; // first存查询的另外一个点,second存查询编号
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
void dfs(int u, int fa)
{
for (int i = h[u]; ~i; i = ne[i])
{
int j = e[i];
if (j == fa) continue;
dist[j] = dist[u] + w[i];
dfs(j, u);
}
}
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
void tarjan(int u)
{
st[u] = 1;
for (int i = h[u]; ~i; i = ne[i])
{
int j = e[i];
if (!st[j])
{
tarjan(j);
p[j] = u;
}
}
for (auto item : query[u])
{
int y = item.first, id = item.second;
if (st[y] == 2)
{
int anc = find(y);
res[id] = dist[u] + dist[y] - dist[anc] * 2;
}
}
st[u] = 2;
}
int main()
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
for (int i = 0; i < n - 1; i ++ )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
add(a, b, c), add(b, a, c);
}
for (int i = 0; i < m; i ++ )
{
int a, b;
scanf("%d%d", &a, &b);
if (a != b)
{
query[a].push_back({b, i});
query[b].push_back({a, i});
}
}
for (int i = 1; i <= n; i ++ ) p[i] = i;
dfs(1, -1);
tarjan(1);
for (int i = 0; i < m; i ++ ) printf("%d\n", res[i]);
return 0;
}
次小生成树
给定一张 N 个点 M 条边的无向图,求无向图的严格次小生成树。
设最小生成树的边权之和为 sum,严格次小生成树就是指边权之和大于 sum 的生成树中最小的一个。
输入格式
第一行包含两个整数 N 和 M。
接下来 M 行,每行包含三个整数 x,y,z,表示点 x 和点 y 之前存在一条边,边的权值为 z。
输出格式
包含一行,仅一个数,表示严格次小生成树的边权和。(数据保证必定存在严格次小生成树)
数据范围
N≤105,M≤3×105
输入样例:
5 6
1 2 1
1 3 2
2 4 3
3 5 4
3 4 3
4 5 6
输出样例:
11
给定一张 N 个点 M 条边的无向图,求无向图的严格次小生成树。
设最小生成树的边权之和为 sum,严格次小生成树就是指边权之和大于 sum 的生成树中最小的一个。
输入格式
第一行包含两个整数 N 和 M。
接下来 M 行,每行包含三个整数 x,y,z,表示点 x 和点 y 之前存在一条边,边的权值为 z。
输出格式
包含一行,仅一个数,表示严格次小生成树的边权和。(数据保证必定存在严格次小生成树)
数据范围
N≤105,M≤3×105
输入样例:
5 6
1 2 1
1 3 2
2 4 3
3 5 4
3 4 3
4 5 6
输出样例:
11
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 100010, M = 300010, INF = 0x3f3f3f3f;
int n, m;
struct Edge
{
int a, b, w;
bool used;
bool operator< (const Edge &t) const
{
return w < t.w;
}
}edge[M];
int p[N];
int h[N], e[M], w[M], ne[M], idx;
int depth[N], fa[N][17], d1[N][17], d2[N][17];
int q[N];
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
int find(int x)
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
LL kruskal()
{
for (int i = 1; i <= n; i ++ ) p[i] = i;
sort(edge, edge + m);
LL res = 0;
for (int i = 0; i < m; i ++ )
{
int a = find(edge[i].a), b = find(edge[i].b), w = edge[i].w;
if (a != b)
{
p[a] = b;
res += w;
edge[i].used = true;
}
}
return res;
}
void build()
{
memset(h, -1, sizeof h);
for (int i = 0; i < m; i ++ )
if (edge[i].used)
{
int a = edge[i].a, b = edge[i].b, w = edge[i].w;
add(a, b, w), add(b, a, w);
}
}
void bfs()
{
memset(depth, 0x3f, sizeof depth);
depth[0] = 0, depth[1] = 1;
q[0] = 1;
int hh = 0, tt = 0;
while (hh <= tt)
{
int t = q[hh ++ ];
for (int i = h[t]; ~i; i = ne[i])
{
int j = e[i];
if (depth[j] > depth[t] + 1)
{
depth[j] = depth[t] + 1;
q[ ++ tt] = j;
fa[j][0] = t;
d1[j][0] = w[i], d2[j][0] = -INF;
for (int k = 1; k <= 16; k ++ )
{
int anc = fa[j][k - 1];
fa[j][k] = fa[anc][k - 1];
int distance[4] = {d1[j][k - 1], d2[j][k - 1], d1[anc][k - 1], d2[anc][k - 1]};
d1[j][k] = d2[j][k] = -INF;
for (int u = 0; u < 4; u ++ )
{
int d = distance[u];
if (d > d1[j][k]) d2[j][k] = d1[j][k], d1[j][k] = d;
else if (d != d1[j][k] && d > d2[j][k]) d2[j][k] = d;
}
}
}
}
}
}
int lca(int a, int b, int w)
{
static int distance[N * 2];
int cnt = 0;
if (depth[a] < depth[b]) swap(a, b);
for (int k = 16; k >= 0; k -- )
if (depth[fa[a][k]] >= depth[b])
{
distance[cnt ++ ] = d1[a][k];
distance[cnt ++ ] = d2[a][k];
a = fa[a][k];
}
if (a != b)
{
for (int k = 16; k >= 0; k -- )
if (fa[a][k] != fa[b][k])
{
distance[cnt ++ ] = d1[a][k];
distance[cnt ++ ] = d2[a][k];
distance[cnt ++ ] = d1[b][k];
distance[cnt ++ ] = d2[b][k];
a = fa[a][k], b = fa[b][k];
}
distance[cnt ++ ] = d1[a][0];
distance[cnt ++ ] = d1[b][0];
}
int dist1 = -INF, dist2 = -INF;
for (int i = 0; i < cnt; i ++ )
{
int d = distance[i];
if (d > dist1) dist2 = dist1, dist1 = d;
else if (d != dist1 && d > dist2) dist2 = d;
}
if (w > dist1) return w - dist1;
if (w > dist2) return w - dist2;
return INF;
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 0; i < m; i ++ )
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
edge[i] = {a, b, c};
}
LL sum = kruskal();
build();
bfs();
LL res = 1e18;
for (int i = 0; i < m; i ++ )
if (!edge[i].used)
{
int a = edge[i].a, b = edge[i].b, w = edge[i].w;
res = min(res, sum + lca(a, b, w));
}
printf("%lld\n", res);
return 0;
}
黑暗连锁
传说中的暗之连锁被人们称为 Dark。
Dark 是人类内心的黑暗的产物,古今中外的勇者们都试图打倒它。
经过研究,你发现 Dark 呈现无向图的结构,图中有 N 个节点和两类边,一类边被称为主要边,而另一类被称为附加边。
Dark 有 N–1 条主要边,并且 Dark 的任意两个节点之间都存在一条只由主要边构成的路径。
另外,Dark 还有 M 条附加边。
你的任务是把 Dark 斩为不连通的两部分。
一开始 Dark 的附加边都处于无敌状态,你只能选择一条主要边切断。
一旦你切断了一条主要边,Dark 就会进入防御模式,主要边会变为无敌的而附加边可以被切断。
但是你的能力只能再切断 Dark 的一条附加边。
现在你想要知道,一共有多少种方案可以击败 Dark。
注意,就算你第一步切断主要边之后就已经把 Dark 斩为两截,你也需要切断一条附加边才算击败了 Dark。
输入格式
第一行包含两个整数 N 和 M。
之后 N–1 行,每行包括两个整数 A 和 B,表示 A 和 B 之间有一条主要边。
之后 M 行以同样的格式给出附加边。
输出格式
输出一个整数表示答案。
数据范围
N≤100000,M≤200000,数据保证答案不超过231−1
输入样例:
4 1
1 2
2 3
1 4
3 4
输出样例:
3
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010, M = N * 2;
int n, m;
int h[N], e[M], ne[M], idx;
int depth[N], fa[N][17];
int d[N];
int q[N];
int ans;
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
void bfs()
{
memset(depth, 0x3f, sizeof depth);
depth[0] = 0, depth[1] = 1;
int hh = 0, tt = 0;
q[0] = 1;
while (hh <= tt)
{
int t = q[hh ++ ];
for (int i = h[t]; ~i; i = ne[i])
{
int j = e[i];
if (depth[j] > depth[t] + 1)
{
depth[j] = depth[t] + 1;
q[ ++ tt] = j;
fa[j][0] = t;
for (int k = 1; k <= 16; k ++ )
fa[j][k] = fa[fa[j][k - 1]][k - 1];
}
}
}
}
int lca(int a, int b)
{
if (depth[a] < depth[b]) swap(a, b);
for (int k = 16; k >= 0; k -- )
if (depth[fa[a][k]] >= depth[b])
a = fa[a][k];
if (a == b) return a;
for (int k = 16; k >= 0; k -- )
if (fa[a][k] != fa[b][k])
{
a = fa[a][k];
b = fa[b][k];
}
return fa[a][0];
}
int dfs(int u, int father)
{
int res = d[u];
for (int i = h[u]; ~i; i = ne[i])
{
int j = e[i];
if (j != father)
{
int s = dfs(j, u);
if (s == 0) ans += m;
else if (s == 1) ans ++ ;
res += s;
}
}
return res;
}
int main()
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
for (int i = 0; i < n - 1; i ++ )
{
int a, b;
scanf("%d%d", &a, &b);
add(a, b), add(b, a);
}
bfs();
for (int i = 0; i < m; i ++ )
{
int a, b;
scanf("%d%d", &a, &b);
int p = lca(a, b);
d[a] ++, d[b] ++, d[p] -= 2;
}
dfs(1, -1);
printf("%d\n", ans);
return 0;
}