DFS深搜小谈

前几天有人跟我说,啊,说dfs一搜搜着搜着就把自己搜蒙了,说一写dfs就要dfs(int a,int b,int c),括号里面放一堆东西。啊今天我要澄清一下,dfs其实没有你想的那么复杂。

dfs这个玩意其实是有模板的:

//DFS模板
inline void dfs(int u){
	if(u==题目中的某个条件){
		按照题目要求单组输出
		puts(""); 
		return ;
	} 
	for(register int i=___;i<___;i___){
		if(!st[i]%%____________){
			st[i]=true;
			按照题目要求操作 
			回溯//e.g.   dfs(u+1);
			st[i]=false;//回复现场 
			//path[u]=0;
		}
	}
}

举个例子:

给定一个整数 n,将数字 1~n 排成一排,将会有很多种排列方法。
现在,请你按照字典序将所有的排列方法输出。

就这道题,我们用模板解一下

#include<bits/stdc++.h>
using namespace std;
int n;
int path[10000];
bool st[10000];
inline void dfs(int u){
	if(u==n){
		for(register int i=0;i<n;i++){
			cout<<path[i]<<" ";
		}	
		puts("");
		return ;
	}
	for(register int i=0;i<n;i++){
		if(!st[i]){
			st[i]=true;
			path[u]=i+1;
			dfs(u+1);
			st[i]=false;
			path[u]=0;
		}
	}
}
int main(){
	cin>>n;
	dfs(0);
	return 0;
}

你看,轻轻松松,那有人问了,每道题都能这么解吗???万一要dfs好多数呢???大部分其实只要一个数就行,我举个栗子:

n皇后问题是指将 n 个皇后放在 n×n 的国际象棋棋盘上,
使得皇后不能相互攻击到,
即任意两个皇后都不能处于同一行、同一列或同一斜线上。
现在给定整数 n,请你输出所有的满足条件的棋子摆法。

#include <iostream>

using namespace std;

const int N = 10;

int n;
bool row[N], col[N], dg[N * 2], udg[N * 2];
char g[N][N];

void dfs(int x, int y, int s)
{
    if (s > n) return;
    if (y == n) y = 0, x ++ ;

    if (x == n)
    {
        if (s == n)
        {
            for (int i = 0; i < n; i ++ ) puts(g[i]);
            puts("");
        }
        return;
    }

    g[x][y] = '.';
    dfs(x, y + 1, s);

    if (!row[x] && !col[y] && !dg[x + y] && !udg[x - y + n])
    {
        row[x] = col[y] = dg[x + y] = udg[x - y + n] = true;
        g[x][y] = 'Q';
        dfs(x, y + 1, s + 1);
        g[x][y] = '.';
        row[x] = col[y] = dg[x + y] = udg[x - y + n] = false;
    }
}

int main()
{
    cin >> n;

    dfs(0, 0, 0);

    return 0;
}

大部分人肯定这么做的,但是,你用初中数学算一算,就可以进行改进:

#include<bits/stdc++.h>
using namespace std;
const int N=3e3;
int n;
char g[N][N];
bool col[N],dg[N],udg[N];
void dfs(int u){
    if(u==n){
        for(int i=0;i<n;i++){
		    for(int j=0;j<n;j++)
			    cout<<g[i][j];
			cout<<endl;
		}
        puts("");
        return;
    }
    for(int i=0;i<n;i++)
        if(!col[i]&&!dg[u+i]&&!udg[n-u+i]){
            g[u][i]='Q';
            col[i]=dg[u+i]=udg[n-u+i]=true;
            dfs(u+1);
            col[i]=dg[u+i]=udg[n-u+i]=false;
            g[u][i]='.';
        }
}
int main(){
    cin>>n;
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
            g[i][j]='.';
    dfs(0);
    return 0;
}

效果是一样的,但是不需要去想dfs后面要几个数,

dfs(int u)

这一个就够了啊

当然,在图中的dfs也是这个道理。

给定一颗树,树中包含 n 个结点(编号 1~n)和 n-1 条无向边。

请你找到树的重心,并输出将重心删除后,剩余各个连通块中点数的最大值。

重心定义:重心是指树中的一个结点,如果将这个点删除后,剩余各个连通块中点数的最大值最小,那么这个节点被称为树的重心。

输入格式
第一行包含整数 n,表示树的结点数。

接下来 n+1 行,每行包含两个整数 a 和 b,表示点 a 和点 b 之间存在一条边。

输出格式
输出一个整数 m,表示将重心删除后,剩余各个连通块中点数的最大值。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010, M = N * 2;

int n;
int h[N], e[M], ne[M], idx;
int ans = N;
bool st[N];

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

int dfs(int u)
{
    st[u] = true;

    int size = 0, sum = 0;
    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (st[j]) continue;

        int s = dfs(j);
        size = max(size, s);
        sum += s;
    }

    size = max(size, n - sum - 1);
    ans = min(ans, size);

    return sum + 1;
}

int main()
{
    scanf("%d", &n);

    memset(h, -1, sizeof h);

    for (int i = 0; i < n - 1; i ++ )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b), add(b, a);
    }

    dfs(1);

    printf("%d\n", ans);

    return 0;
}


posted @ 2022-02-11 20:59  PassName  阅读(27)  评论(0编辑  收藏  举报