nltk中meteor_score的计算,报错
懒得在介绍来龙去脉了,反正就是找到的代码全是这种:
import nltk
hypothesis = ' '.join(['It', 'is', 'a', 'cat', 'at', 'room'])
reference = ' '.join(['It', 'is', 'a', 'cat', 'inside', 'the', 'room'])
#there may be several references
merteor_score = nltk.translate.meteor_score.single_meteor_score(reference, hypothesis)
print(merteor_score)
简单来说就是hypothesis和
reference都是字符串,然后我就一直报这个错:TypeError: "hypothesis" expects pre-tokenized hypothesis (Iterable[str]): It is a cat at room。看起来是类型问题,然后找了一通,全都是用的字符串,最后没办法了看了眼源码,说要求是{
hypothesis
}格式,我觉得应该是set类型吧,然后就把
hypothesis和
reference改成了set,然后就可以了,就emmm,我还费劲巴拉改一晚上,难道是nltk版本更新所以数据格式换了?
改后代码:
import nltk
# from nltk.corpus import wordnet
# nltk.download('wordnet')
hypothesis = ['It', 'is', 'a', 'cat', 'at', 'room']
reference = ['It', 'is', 'a', 'cat', 'inside', 'the', 'room']
hypothesis=set(hypothesis)
reference=set(reference)
#there may be several references
merteor_score = nltk.translate.meteor_score.single_meteor_score(reference, hypothesis)
print(merteor_score)