Python基础(七):面对对象编程
面向对象编程#
面向对象编程——Object Oriented Programming,简称OOP,是一种程序设计思想。OOP把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数。
在Python中,所有数据类型都可以视为对象,当然也可以自定义对象。自定义的对象数据类型就是面向对象中的类(Class)的概念。
class Student(object):
def __init__(self, name, score):
self.name = name
self.score = score
def print_score(self):
print('%s: %s' % (self.name, self.score))
bart = Student('Bart Simpson', 59)
lisa = Student('Lisa Simpson', 87)
bart.print_score()
lisa.print_score()
-
Student这种数据类型就是对象
-
name和score就是对象拥有的属性
-
print_score就是操作数据的函数,对象的方法
-
bart和lisa就是实例化对象,是两个具体的Student
-
所以,面向对象的设计思想是抽象出类,根据类创建实例。
-
面向对象的抽象程度又比函数要高,因为一个Class既包含数据,又包含操作数据的方法。
类和实例#
定义类,通过class
关键字#
class Student(object):
pass
class
后面紧接着是类名,即Student
,类名通常是大写开头的单词,紧接着是(object)
,表示该类是从哪个类继承下来的。通常,如果没有合适的继承类,就使用object
类,这是所有类最终都会继承的类。
创建实例,通过类名+()实现的:#
>>> bart = Student()
>>> bart
<__main__.Student object at 0x10a67a590>
>>> Student
<class '__main__.Student'>
可以自由地给一个实例变量绑定属性,比如,给实例bart
绑定一个name
属性:
>>> bart.name = 'Bart Simpson'
>>> bart.name
'Bart Simpson'
定义__init__
方法,填写属性#
`__init__`方法的第一个参数永远是`self`,表示创建的实例本身,因此,在`__init__`方法内部,就可以把各种属性绑定到`self`,因为`self`就指向创建的实例本身
class Student(object):
def __init__(self, name, score):
self.name = name
self.score = score
数据封装#
直接在类内部定义访问数据的函数,这样就把数据给封装起来。封装数据的函数和类本身是关联起来的,成为类的方法
定义一个方法,除了第一个参数是self
外,其他和普通函数一样。要调用一个方法,只需要在实例变量上直接调用,除了self
不用传递,其他参数正常传入:
class Student(object):
def __init__(self, name, score):
self.name = name
self.score = score
def print_score(self):
print('%s: %s' % (self.name, self.score))
小结#
类是创建实例的模板,而实例则是一个一个具体的对象,各个实例拥有的数据都互相独立,互不影响;
方法就是与实例绑定的函数,和普通函数不同,方法可以直接访问实例的数据;
通过在实例上调用方法,我们就直接操作了对象内部的数据,但无需知道方法内部的实现细节。
和静态语言不同,Python允许对实例变量绑定任何数据,也就是说,对于两个实例变量,虽然它们都是同一个类的不同实例,但拥有的变量名称都可能不同
>>> bart = Student('Bart Simpson', 59)
>>> lisa = Student('Lisa Simpson', 87)
>>> bart.age = 8
>>> bart.age
8
>>> lisa.age
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'age'
访问限制#
由于外部代码可以通过直接调用实例变量的方法来操作数据,修改实例的属性,如下:
>>> bart = Student('Bart Simpson', 59)
>>> bart.score
59
>>> bart.score = 99
>>> bart.score
99
- 想让内部属性不被外部访问,可以在属性前加上两个下划线
__
,在Python中,实例的变量名如果以__
开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问。如下:
class Student(object):
def __init__(self, name, score):
self.__name = name
self.__score = score
def print_score(self):
print('%s: %s' % (self.__name, self.__score))
>>> bart = Student('Bart Simpson', 59)
>>> bart.__name
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute '__name'
- 如果外部代码要访问私有属性,可以在类中增加
get_name
和get_score
这样的方法:
class Student(object):
...
def get_name(self):
return self.__name
def get_score(self):
return self.__score
- 如果要允许外部代码修改属性,可以在类中增加
set_score
方法:
class Student(object):
...
def set_score(self, score):
self.__score = score
你也许会问,原先那种直接通过bart.score = 99
也可以修改啊,为什么要定义一个方法大费周折?因为在方法中,可以对参数做检查,避免传入无效的参数:
class Student(object):
...
def set_score(self, score):
if 0 <= score <= 100:
self.__score = score
else:
raise ValueError('bad score')
- 特殊变量,变量名类似
__xxx__
的。可以直接访问的,不是private变量 - 以一个下划线开头的实例变量名,比如
_name
,这样的实例变量外部是可以访问的,但是,按照约定俗成的规定,当你看到这样的变量时,意思就是,“虽然我可以被访问,但是,请把我视为私有变量,不要随意访问”。 - 双下划线开头的实例变量是不是一定不能从外部访问呢?其实也不是。不能直接访问
__name
是因为Python解释器对外把__name
变量改成了_Student__name
,所以,仍然可以通过_Student__name
来访问__name
变量。但是强烈建议你不要这么干,因为不同版本的Python解释器可能会把__name
改成不同的变量名。
class Student(object):
def __init__(self, name, score):
self.__name = name
self.__score = score
def get_name(self):
return self.__name
def get_score(self):
return self.__score
def set_score(self, score):
if 0 <= score <= 100:
self.__score = score
else:
raise ValueError('bad score')
def get_grade(self):
if self.__score >= 90:
return 'A'
elif self.__score >= 60:
return 'B'
else:
return 'C'
bart = Student('Bart Simpson', 59)
print('bart.get_name() =', bart.get_name())
bart.set_score(60)
print('bart.get_score() =', bart.get_score())
print('DO NOT use bart._Student__name:', bart._Student__name)
继承和多态#
-
父类
定义一个class的时候,可以从某个现有的class继承,新的class称为子类(Subclass),而被继承的class称为基类、父类或超类(Base class、Super class)。 -
继承,如下:
Dog
和Cat
类,可以直接从Animal
类继承
class Animal(object):
def run(self):
print('Animal is running...')
class Dog(Animal):
pass
class Cat(Animal):
pass
dog = Dog()
dog.run()
cat = Cat()
cat.run()
运行结果如下:
Animal is running...
Animal is running...
继承的好处:子类可以直接继承父类的全部功能。
2. 多态,子类的方法可以覆盖父类的
class Dog(Animal):
def run(self):
print('Dog is running...')
class Cat(Animal):
def run(self):
print('Cat is running...')
结果如下:
Dog is running...
Cat is running...
在继承关系中,如果一个实例的数据类型是某个子类,那它的数据类型也可以被看做是父类。但是,反过来就不行
a = list() # a是list类型
b = Animal() # b是Animal类型
c = Dog() # c是Dog类型
>>> isinstance(a, list)
True
>>> isinstance(b, Animal)
True
>>> isinstance(c, Dog)
True
>>> isinstance(c, Animal)
True
>>> b = Animal()
>>> isinstance(b, Dog)
False
对于一个变量,我们只需要知道它是Animal
类型,无需确切地知道它的子类型,就可以放心地调用run()
方法,而具体调用的run()
方法是作用在Animal
、Dog
、Cat
还是Tortoise
对象上,由运行时该对象的确切类型决定,这就是多态真正的威力:调用方只管调用,不管细节,而当我们新增一种Animal
的子类时,只要确保run()
方法编写正确,不用管原来的代码是如何调用的。这就是著名的“开闭”原则:
对扩展开放:允许新增Animal
子类;
对修改封闭:不需要修改依赖Animal
类型的run_twice()
等函数。
def run_twice(animal):
animal.run()
animal.run()
>>> run_twice(Animal())
Animal is running...
Animal is running...
>>> run_twice(Dog())
Dog is running...
Dog is running...
class Tortoise(Animal):
def run(self):
print('Tortoise is running slowly...')
>>> run_twice(Tortoise())
Tortoise is running slowly...
Tortoise is running slowly...
小结#
继承可以把父类的所有功能都直接拿过来,这样就不必重零做起,子类只需要新增自己特有的方法,也可以把父类不适合的方法覆盖重写。
动态语言的鸭子类型特点决定了继承不像静态语言那样是必须的。
获取对象信息#
- 用type判断对象是什么类型
>>> type(123)
<class 'int'>
>>> type('str')
<class 'str'>
>>> type(None)
<type(None) 'NoneType'>
判断一个对象是否是函数可以使用types
模块中定义的常量:
>>> import types
>>> def fn():
... pass
...
>>> type(fn)==types.FunctionType
True
- 如果是class的类型可以用
isinstance()
函数。
能用type()
判断的基本类型也可以用isinstance()
判断
继承关系是:
object -> Animal -> Dog -> Husky
>>> a = Animal()
>>> d = Dog()
>>> h = Husky()
>>> isinstance(h, Husky)
True
>>> isinstance(h, Dog)
True
>>> isinstance(h, Animal)
True
>>> isinstance(d, Husky)
False
- 获得一个对象的所有属性和方法,可以使用
dir()
函数。它返回一个包含字符串的list,比如,获得一个str对象的所有属性和方法:
>>> dir('ABC')
['__add__', '__class__',..., '__subclasshook__', 'capitalize', 'casefold',..., 'zfill']
配合getattr()
、setattr()
以及hasattr()
,我们可以直接操作一个对象的状态:
>>> class MyObject(object):
... def __init__(self):
... self.x = 9
... def power(self):
... return self.x * self.x
...
>>> obj = MyObject()
>>> hasattr(obj, 'x') # 有属性'x'吗?
True
>>> obj.x
9
>>> hasattr(obj, 'y') # 有属性'y'吗?
False
>>> setattr(obj, 'y', 19) # 设置一个属性'y'
>>> hasattr(obj, 'y') # 有属性'y'吗?
True
>>> getattr(obj, 'y') # 获取属性'y'
19
>>> obj.y # 获取属性'y'
19
也可以获得对象的方法
>>> hasattr(obj, 'power') # 有属性'power'吗?
True
>>> getattr(obj, 'power') # 获取属性'power'
<bound method MyObject.power of <__main__.MyObject object at 0x10077a6a0>>
>>> fn = getattr(obj, 'power') # 获取属性'power'并赋值到变量fn
>>> fn # fn指向obj.power
<bound method MyObject.power of <__main__.MyObject object at 0x10077a6a0>>
>>> fn() # 调用fn()与调用obj.power()是一样的
81
小结#
通过内置的一系列函数,我们可以对任意一个Python对象进行剖析,拿到其内部的数据。要注意的是,只有在不知道对象信息的时候,我们才会去获取对象信息。如果可以直接写:
sum = obj.x + obj.y
就不要写:
sum = getattr(obj, 'x') + getattr(obj, 'y')
一个正确的用法的例子如下:
def readImage(fp):
if hasattr(fp, 'read'):
return readData(fp)
return None
假设我们希望从文件流fp中读取图像,我们首先要判断该fp对象是否存在read方法,如果存在,则该对象是一个流,如果不存在,则无法读取。hasattr()
就派上了用场。
实例属性和类属性#
给实例绑定属性的方法是通过实例变量,或者通过self
变量:
class Student(object):
def __init__(self, name):
self.name = name
s = Student('Bob')
s.score = 90
给类定义属性
class Student(object):
name = 'Student'
当定义了一个类属性后,这个属性虽然归类所有,但类的所有实例都可以访问到。来测试一下:
>>> class Student(object):
... name = 'Student'
...
>>> s = Student() # 创建实例s
>>> print(s.name) # 打印name属性,因为实例并没有name属性,所以会继续查找class的name属性
Student
>>> print(Student.name) # 打印类的name属性
Student
>>> s.name = 'Michael' # 给实例绑定name属性
>>> print(s.name) # 由于实例属性优先级比类属性高,因此,它会屏蔽掉类的name属性
Michael
>>> print(Student.name) # 但是类属性并未消失,用Student.name仍然可以访问
Student
>>> del s.name # 如果删除实例的name属性
>>> print(s.name) # 再次调用s.name,由于实例的name属性没有找到,类的name属性就显示出来了
Student
从上面的例子可以看出,在编写程序的时候,千万不要对实例属性和类属性使用相同的名字,因为相同名称的实例属性将屏蔽掉类属性,但是当你删除实例属性后,再使用相同的名称,访问到的将是类属性。
作者: 是小鱼呀
出处:https://www.cnblogs.com/sophia12138/p/17018070.html
本站使用「CC BY 4.0」创作共享协议,转载请在文章明显位置注明作者及出处。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!