使用Standford coreNLP进行中文命名实体识别
因为工作需要,调研了一下Stanford coreNLP的命名实体识别功能。
Stanford CoreNLP是一个比较厉害的自然语言处理工具,很多模型都是基于深度学习方法训练得到的。
先附上其官网链接:
- https://stanfordnlp.github.io/CoreNLP/index.html
- https://nlp.stanford.edu/nlp/javadoc/javanlp/
- https://github.com/stanfordnlp/CoreNLP
本文主要讲解如何在java工程中使用Stanford CoreNLP;
1.环境准备
3.5之后的版本都需要java8以上的环境才能运行。需要进行中文处理的话,比较占用内存,3G左右的内存消耗。
笔者使用的maven进行依赖的引入,使用的是3.9.1版本。
直接在pom文件中加入下面的依赖:
<dependency> <groupId>edu.stanford.nlp</groupId> <artifactId>stanford-corenlp</artifactId> <version>3.9.1</version> </dependency> <dependency> <groupId>edu.stanford.nlp</groupId> <artifactId>stanford-corenlp</artifactId> <version>3.9.1</version> <classifier>models</classifier> </dependency> <dependency> <groupId>edu.stanford.nlp</groupId> <artifactId>stanford-corenlp</artifactId> <version>3.9.1</version> <classifier>models-chinese</classifier> </dependency>
3个包分别是CoreNLP的算法包、英文语料包、中文预料包。这3个包的总大小为1.43G。maven默认镜像在国外,而这几个依赖包特别大,可以找有着三个依赖的国内镜像试一下。笔者用的是自己公司的maven仓库。
2.代码调用
需要注意的是,因为我是需要进行中文的命名实体识别,因此需要使用中文分词和中文的词典。我们可以先打开引入的jar包的结构:
其中有个StanfordCoreNLP-chinese.properties文件,这里面设定了进行中文自然语言处理的一些参数。主要指定相应的pipeline的操作步骤以及对应的预料文件的位置。实际上我们可能用不到所有的步骤,或者要使用不同的语料库,因此可以自定义配置文件,然后再引入。那在我的项目中,我就直接读取了该properties文件。
attention:此处笔者要使用的是ner功能,但可能不想使用其他的一些annotation,想去掉。然而,Stanford CoreNLP有一些局限,就是在ner执行之前,一定需要
tokenize, ssplit, pos, lemma
的引入,当然这增加了很大的时间耗时。
其实我们可以先来分析一下这个properties文件:
# Pipeline options - lemma is no-op for Chinese but currently needed because coref demands it (bad old requirements system) annotators = tokenize, ssplit, pos, lemma, ner, parse, coref # segment tokenize.language = zh segment.model = edu/stanford/nlp/models/segmenter/chinese/ctb.gz segment.sighanCorporaDict = edu/stanford/nlp/models/segmenter/chinese segment.serDictionary = edu/stanford/nlp/models/segmenter/chinese/dict-chris6.ser.gz segment.sighanPostProcessing = true # sentence split ssplit.boundaryTokenRegex = [.。]|[!?!?]+ # pos pos.model = edu/stanford/nlp/models/pos-tagger/chinese-distsim/chinese-distsim.tagger # ner 此处设定了ner使用的语言、模型(crf),目前SUTime只支持英文,不支持中文,所以设置为false。 ner.language = chinese ner.model = edu/stanford/nlp/models/ner/chinese.misc.distsim.crf.ser.gz ner.applyNumericClassifiers = true ner.useSUTime = false # regexner ner.fine.regexner.mapping = edu/stanford/nlp/models/kbp/chinese/cn_regexner_mapping.tab ner.fine.regexner.noDefaultOverwriteLabels = CITY,COUNTRY,STATE_OR_PROVINCE # parse parse.model = edu/stanford/nlp/models/srparser/chineseSR.ser.gz # depparse depparse.model = edu/stanford/nlp/models/parser/nndep/UD_Chinese.gz depparse.language = chinese # coref coref.sieves = ChineseHeadMatch, ExactStringMatch, PreciseConstructs, StrictHeadMatch1, StrictHeadMatch2, StrictHeadMatch3, StrictHeadMatch4, PronounMatch coref.input.type = raw coref.postprocessing = true coref.calculateFeatureImportance = false coref.useConstituencyTree = true coref.useSemantics = false coref.algorithm = hybrid coref.path.word2vec = coref.language = zh coref.defaultPronounAgreement = true coref.zh.dict = edu/stanford/nlp/models/dcoref/zh-attributes.txt.gz coref.print.md.log = false coref.md.type = RULE coref.md.liberalChineseMD = false # kbp kbp.semgrex = edu/stanford/nlp/models/kbp/chinese/semgrex kbp.tokensregex = edu/stanford/nlp/models/kbp/chinese/tokensregex kbp.language = zh kbp.model = none # entitylink entitylink.wikidict = edu/stanford/nlp/models/kbp/chinese/wikidict_chinese.tsv.gz
那我们就直接在代码中引入这个properties文件,参考代码如下:
package com.baidu.corenlp; import java.util.List; import java.util.Map; import java.util.Properties; import edu.stanford.nlp.coref.CorefCoreAnnotations; import edu.stanford.nlp.coref.data.CorefChain; import edu.stanford.nlp.ling.CoreAnnotations; import edu.stanford.nlp.ling.CoreLabel; import edu.stanford.nlp.pipeline.Annotation; import edu.stanford.nlp.pipeline.StanfordCoreNLP; import edu.stanford.nlp.semgraph.SemanticGraph; import edu.stanford.nlp.semgraph.SemanticGraphCoreAnnotations; import edu.stanford.nlp.trees.Tree; import edu.stanford.nlp.trees.TreeCoreAnnotations; import edu.stanford.nlp.util.CoreMap; /** * Created by sonofelice on 2018/3/27. */ public class TestNLP { public void test() throws Exception { //构造一个StanfordCoreNLP对象,配置NLP的功能,如lemma是词干化,ner是命名实体识别等 Properties props = new Properties(); props.load(this.getClass().getResourceAsStream("/StanfordCoreNLP-chinese.properties")); StanfordCoreNLP pipeline = new StanfordCoreNLP(props); String text = "袁隆平是中国科学院的院士,他于2009年10月到中国山东省东营市东营区永乐机场附近承包了一千亩盐碱地," + "开始种植棉花, 年产量达到一万吨, 哈哈, 反正棣琦说的是假的,逗你玩儿,明天下午2点来我家吃饭吧。" + "棣琦是山东大学毕业的,目前在百度做java开发,位置是东北旺东路102号院,手机号14366778890"; long startTime = System.currentTimeMillis(); // 创造一个空的Annotation对象 Annotation document = new Annotation(text); // 对文本进行分析 pipeline.annotate(document); //获取文本处理结果 List<CoreMap> sentences = document.get(CoreAnnotations.SentencesAnnotation.class); for (CoreMap sentence : sentences) { // traversing the words in the current sentence // a CoreLabel is a CoreMap with additional token-specific methods for (CoreLabel token : sentence.get(CoreAnnotations.TokensAnnotation.class)) { // // 获取句子的token(可以是作为分词后的词语) String word = token.get(CoreAnnotations.TextAnnotation.class); System.out.println(word); //词性标注 String pos = token.get(CoreAnnotations.PartOfSpeechAnnotation.class); System.out.println(pos); // 命名实体识别 String ne = token.get(CoreAnnotations.NormalizedNamedEntityTagAnnotation.class); String ner = token.get(CoreAnnotations.NamedEntityTagAnnotation.class); System.out.println(word + " | analysis : { original : " + ner + "," + " normalized : " + ne + "}"); //词干化处理 String lema = token.get(CoreAnnotations.LemmaAnnotation.class); System.out.println(lema); } // 句子的解析树 Tree tree = sentence.get(TreeCoreAnnotations.TreeAnnotation.class); System.out.println("句子的解析树:"); tree.pennPrint(); // 句子的依赖图 SemanticGraph graph = sentence.get(SemanticGraphCoreAnnotations.CollapsedCCProcessedDependenciesAnnotation.class); System.out.println("句子的依赖图"); System.out.println(graph.toString(SemanticGraph.OutputFormat.LIST)); } long endTime = System.currentTimeMillis(); long time = endTime - startTime; System.out.println("The analysis lasts " + time + " seconds * 1000"); // 指代词链 //每条链保存指代的集合 // 句子和偏移量都从1开始 Map<Integer, CorefChain> corefChains = document.get(CorefCoreAnnotations.CorefChainAnnotation.class); if (corefChains == null) { return; } for (Map.Entry<Integer, CorefChain> entry : corefChains.entrySet()) { System.out.println("Chain " + entry.getKey() + " "); for (CorefChain.CorefMention m : entry.getValue().getMentionsInTextualOrder()) { // We need to subtract one since the indices count from 1 but the Lists start from 0 List<CoreLabel> tokens = sentences.get(m.sentNum - 1).get(CoreAnnotations.TokensAnnotation.class); // We subtract two for end: one for 0-based indexing, and one because we want last token of mention // not one following. System.out.println( " " + m + ", i.e., 0-based character offsets [" + tokens.get(m.startIndex - 1).beginPosition() + ", " + tokens.get(m.endIndex - 2).endPosition() + ")"); } } } }
public static void main(String[] args) throws Exception {
TestNLP nlp=new TestNLP();
nlp.test();
}
当然,我在运行过程中,只保留了ner相关的分析,别的功能注释掉了。输出结果如下:
19:46:16.000 [main] INFO e.s.nlp.pipeline.StanfordCoreNLP - Adding annotator pos 19:46:19.387 [main] INFO e.s.nlp.tagger.maxent.MaxentTagger - Loading POS tagger from edu/stanford/nlp/models/pos-tagger/chinese-distsim/chinese-distsim.tagger ... done [3.4 sec]. 19:46:19.388 [main] INFO e.s.nlp.pipeline.StanfordCoreNLP - Adding annotator lemma 19:46:19.389 [main] INFO e.s.nlp.pipeline.StanfordCoreNLP - Adding annotator ner 19:46:21.938 [main] INFO e.s.n.ie.AbstractSequenceClassifier - Loading classifier from edu/stanford/nlp/models/ner/chinese.misc.distsim.crf.ser.gz ... done [2.5 sec]. 19:46:22.099 [main] WARN e.s.n.p.TokensRegexNERAnnotator - TokensRegexNERAnnotator ner.fine.regexner: Entry has multiple types for ner: 巴伐利亚 STATE_OR_PROVINCE MISC,GPE,LOCATION 1. Taking type to be MISC 19:46:22.100 [main] WARN e.s.n.p.TokensRegexNERAnnotator - TokensRegexNERAnnotator ner.fine.regexner: Entry has multiple types for ner: 巴伐利亚 州 STATE_OR_PROVINCE MISC,GPE,LOCATION 1. Taking type to be MISC 19:46:22.100 [main] INFO e.s.n.p.TokensRegexNERAnnotator - TokensRegexNERAnnotator ner.fine.regexner: Read 21238 unique entries out of 21249 from edu/stanford/nlp/models/kbp/chinese/cn_regexner_mapping.tab, 0 TokensRegex patterns. 19:46:22.532 [main] INFO e.s.nlp.pipeline.StanfordCoreNLP - Adding annotator parse 19:46:35.855 [main] INFO e.s.nlp.parser.common.ParserGrammar - Loading parser from serialized file edu/stanford/nlp/models/srparser/chineseSR.ser.gz ... done [13.3 sec]. 19:46:35.859 [main] INFO e.s.nlp.pipeline.StanfordCoreNLP - Adding annotator coref 19:46:43.139 [main] INFO e.s.n.pipeline.CorefMentionAnnotator - Using mention detector type: rule 19:46:43.148 [main] INFO e.s.nlp.wordseg.ChineseDictionary - Loading Chinese dictionaries from 1 file: 19:46:43.148 [main] INFO e.s.nlp.wordseg.ChineseDictionary - edu/stanford/nlp/models/segmenter/chinese/dict-chris6.ser.gz 19:46:43.329 [main] INFO e.s.nlp.wordseg.ChineseDictionary - Done. Unique words in ChineseDictionary is: 423200. 19:46:43.379 [main] INFO edu.stanford.nlp.wordseg.CorpusChar - Loading character dictionary file from edu/stanford/nlp/models/segmenter/chinese/dict/character_list [done]. 19:46:43.380 [main] INFO e.s.nlp.wordseg.AffixDictionary - Loading affix dictionary from edu/stanford/nlp/models/segmenter/chinese/dict/in.ctb [done]. 袁隆平 | analysis : { original : PERSON, normalized : null} 是 | analysis : { original : O, normalized : null} 中国 | analysis : { original : ORGANIZATION, normalized : null} 科学院 | analysis : { original : ORGANIZATION, normalized : null} 的 | analysis : { original : O, normalized : null} 院士 | analysis : { original : TITLE, normalized : null} , | analysis : { original : O, normalized : null} 他 | analysis : { original : O, normalized : null} 于 | analysis : { original : O, normalized : null} 2009年 | analysis : { original : DATE, normalized : 2009-10-XX} 10月 | analysis : { original : DATE, normalized : 2009-10-XX} 到 | analysis : { original : O, normalized : null} 中国 | analysis : { original : COUNTRY, normalized : null} 山东省 | analysis : { original : STATE_OR_PROVINCE, normalized : null} 东营市 | analysis : { original : CITY, normalized : null} 东营区 | analysis : { original : FACILITY, normalized : null} 永乐 | analysis : { original : FACILITY, normalized : null} 机场 | analysis : { original : FACILITY, normalized : null} 附近 | analysis : { original : O, normalized : null} 承包 | analysis : { original : O, normalized : null} 了 | analysis : { original : O, normalized : null} 一千 | analysis : { original : NUMBER, normalized : 1000} 亩 | analysis : { original : O, normalized : null} 盐 | analysis : { original : O, normalized : null} 碱地 | analysis : { original : O, normalized : null} , | analysis : { original : O, normalized : null} 开始 | analysis : { original : O, normalized : null} 种植 | analysis : { original : O, normalized : null} 棉花 | analysis : { original : O, normalized : null} , | analysis : { original : O, normalized : null} 年产量 | analysis : { original : O, normalized : null} 达到 | analysis : { original : O, normalized : null} 一万 | analysis : { original : NUMBER, normalized : 10000} 吨 | analysis : { original : O, normalized : null} , | analysis : { original : O, normalized : null} 哈哈 | analysis : { original : O, normalized : null} , | analysis : { original : O, normalized : null} 反正 | analysis : { original : O, normalized : null} 棣琦 | analysis : { original : PERSON, normalized : null} 说 | analysis : { original : O, normalized : null} 的 | analysis : { original : O, normalized : null} 是 | analysis : { original : O, normalized : null} 假 | analysis : { original : O, normalized : null} 的 | analysis : { original : O, normalized : null} , | analysis : { original : O, normalized : null} 逗 | analysis : { original : O, normalized : null} 你 | analysis : { original : O, normalized : null} 玩儿 | analysis : { original : O, normalized : null} , | analysis : { original : O, normalized : null} 明天 | analysis : { original : DATE, normalized : XXXX-XX-XX} 下午 | analysis : { original : TIME, normalized : null} 2点 | analysis : { original : TIME, normalized : null} 来 | analysis : { original : O, normalized : null} 我 | analysis : { original : O, normalized : null} 家 | analysis : { original : O, normalized : null} 吃饭 | analysis : { original : O, normalized : null} 吧 | analysis : { original : O, normalized : null} 。 | analysis : { original : O, normalized : null} 棣琦 | analysis : { original : PERSON, normalized : null} 是 | analysis : { original : O, normalized : null} 山东 | analysis : { original : ORGANIZATION, normalized : null} 大学 | analysis : { original : ORGANIZATION, normalized : null} 毕业 | analysis : { original : O, normalized : null} 的 | analysis : { original : O, normalized : null} , | analysis : { original : O, normalized : null} 目前 | analysis : { original : DATE, normalized : null} 在 | analysis : { original : O, normalized : null} 百度 | analysis : { original : ORGANIZATION, normalized : null} 做 | analysis : { original : O, normalized : null} java | analysis : { original : O, normalized : null} 开发 | analysis : { original : O, normalized : null} , | analysis : { original : O, normalized : null} 位置 | analysis : { original : O, normalized : null} 是 | analysis : { original : O, normalized : null} 东北 | analysis : { original : LOCATION, normalized : null} 旺 | analysis : { original : O, normalized : null} 东路 | analysis : { original : O, normalized : null} 102 | analysis : { original : NUMBER, normalized : 102} 号院 | analysis : { original : O, normalized : null} , | analysis : { original : O, normalized : null} 手机号 | analysis : { original : O, normalized : null} 143667788 | analysis : { original : NUMBER, normalized : 14366778890} 90 | analysis : { original : NUMBER, normalized : 14366778890} The analysis lasts 819 seconds * 1000 Process finished with exit code 0
我们可以看到,整个工程的启动耗时还是挺久的。分析过程也比较耗时,819毫秒。
并且结果也不够准确,跟我在其官网在线demo得到的结果还是有些差异的: