pytorch实现空洞卷积+残差网络实验(torch实现)

一:pytorch实现空洞卷积实验(torch实现)
要求:
从至少一个数据集上进行实验,同理,这里我选取了车辆分类数据集(后面的实验都是用的车辆分类数据集),主要在之前利用torch.nn实现二维卷积的基础上,为解决感受野比较的问题,将普通的卷积修改为空洞卷积,并且卷几率符合HDC条件(这里我选取了1,2,5),并且堆叠了2层HDC,即一共六层卷积层。
实验过程:
注:所谓的空洞卷积,与https://blog.csdn.net/qq_37534947/article/details/109726153的torch.nn实现的二维卷积除了模型的定义部分不一样之外,其他的如:数据集、画图、计时、优化器等都是一样的,当然参数设置可能会有些不同,主要在实验结果区分,所以我这里主要针对模型定义做相关介绍。
1.1 空洞卷积模型定义

1.	#pytorch封装卷积层  
2.	class ConvModule
posted @   小小新一枚  阅读(53)  评论(0编辑  收藏  举报  
编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· AI 智能体引爆开源社区「GitHub 热点速览」
· 写一个简单的SQL生成工具
点击右上角即可分享
微信分享提示