Redis的Java客户端Jedis的八种调用方式(事务、管道、分布式)介绍
- 一、普通同步方式
- 二、事务方式(Transactions)
- 三、管道(Pipelining)
- 四、管道中调用事务
- 五、分布式直连同步调用
- 六、分布式直连异步调用
- 七、分布式连接池同步调用
- 八、分布式连接池异步调用
- 九、需要注意的地方
- 十、测试
- 十一、完整的测试代码
jedis是一个著名的key-value存储系统,而作为其官方推荐的java版客户端jedis也非常强大和稳定,支持事务、管道及有jedis自身实现的分布式。
在这里对jedis关于事务、管道和分布式的调用方式做一个简单的介绍和对比:
一、普通同步方式
最简单和基础的调用方式,
1
2
3
4
5
6
7
8
9
10
11
|
@Test public void test1Normal() { Jedis jedis = new Jedis( "localhost" ); long start = System.currentTimeMillis(); for ( int i = 0 ; i < 100000 ; i++) { String result = jedis.set( "n" + i, "n" + i); } long end = System.currentTimeMillis(); System.out.println( "Simple SET: " + ((end - start)/ 1000.0 ) + " seconds" ); jedis.disconnect(); } |
很简单吧,每次set
之后都可以返回结果,标记是否成功。
二、事务方式(Transactions)
redis的事务很简单,他主要目的是保障,一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。
看下面例子:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
@Test public void test2Trans() { Jedis jedis = new Jedis( "localhost" ); long start = System.currentTimeMillis(); Transaction tx = jedis.multi(); for ( int i = 0 ; i < 100000 ; i++) { tx.set( "t" + i, "t" + i); } List<Object> results = tx.exec(); long end = System.currentTimeMillis(); System.out.println( "Transaction SET: " + ((end - start)/ 1000.0 ) + " seconds" ); jedis.disconnect(); } |
我们调用jedis.watch(…)
方法来监控key,如果调用后key值发生变化,则整个事务会执行失败。另外,事务中某个操作失败,并不会回滚其他操作。这一点需要注意。还有,我们可以使用discard()
方法来取消事务。
三、管道(Pipelining)
有时,我们需要采用异步方式,一次发送多个指令,不同步等待其返回结果。这样可以取得非常好的执行效率。这就是管道,调用方法如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
@Test public void test3Pipelined() { Jedis jedis = new Jedis( "localhost" ); Pipeline pipeline = jedis.pipelined(); long start = System.currentTimeMillis(); for ( int i = 0 ; i < 100000 ; i++) { pipeline.set( "p" + i, "p" + i); } List<Object> results = pipeline.syncAndReturnAll(); long end = System.currentTimeMillis(); System.out.println( "Pipelined SET: " + ((end - start)/ 1000.0 ) + " seconds" ); jedis.disconnect(); } |
四、管道中调用事务
就Jedis提供的方法而言,是可以做到在管道中使用事务,其代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
@Test public void test4combPipelineTrans() { jedis = new Jedis( "localhost" ); long start = System.currentTimeMillis(); Pipeline pipeline = jedis.pipelined(); pipeline.multi(); for ( int i = 0 ; i < 100000 ; i++) { pipeline.set( "" + i, "" + i); } pipeline.exec(); List<Object> results = pipeline.syncAndReturnAll(); long end = System.currentTimeMillis(); System.out.println( "Pipelined transaction: " + ((end - start)/ 1000.0 ) + " seconds" ); jedis.disconnect(); } |
但是经测试(见本文后续部分),发现其效率和单独使用事务差不多,甚至还略微差点。
五、分布式直连同步调用
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
@Test public void test5shardNormal() { List<JedisShardInfo> shards = Arrays.asList( new JedisShardInfo( "localhost" , 6379 ), new JedisShardInfo( "localhost" , 6380 )); ShardedJedis sharding = new ShardedJedis(shards); long start = System.currentTimeMillis(); for ( int i = 0 ; i < 100000 ; i++) { String result = sharding.set( "sn" + i, "n" + i); } long end = System.currentTimeMillis(); System.out.println( "Simple@Sharing SET: " + ((end - start)/ 1000.0 ) + " seconds" ); sharding.disconnect(); } |
这个是分布式直接连接,并且是同步调用,每步执行都返回执行结果。类似地,还有异步管道调用。
六、分布式直连异步调用
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
@Test public void test6shardpipelined() { List<JedisShardInfo> shards = Arrays.asList( new JedisShardInfo( "localhost" , 6379 ), new JedisShardInfo( "localhost" , 6380 )); ShardedJedis sharding = new ShardedJedis(shards); ShardedJedisPipeline pipeline = sharding.pipelined(); long start = System.currentTimeMillis(); for ( int i = 0 ; i < 100000 ; i++) { pipeline.set( "sp" + i, "p" + i); } List<Object> results = pipeline.syncAndReturnAll(); long end = System.currentTimeMillis(); System.out.println( "Pipelined@Sharing SET: " + ((end - start)/ 1000.0 ) + " seconds" ); sharding.disconnect(); } |
七、分布式连接池同步调用
如果,你的分布式调用代码是运行在线程中,那么上面两个直连调用方式就不合适了,因为直连方式是非线程安全的,这个时候,你就必须选择连接池调用。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
@Test public void test7shardSimplePool() { List<JedisShardInfo> shards = Arrays.asList( new JedisShardInfo( "localhost" , 6379 ), new JedisShardInfo( "localhost" , 6380 )); ShardedJedisPool pool = new ShardedJedisPool( new JedisPoolConfig(), shards); ShardedJedis one = pool.getResource(); long start = System.currentTimeMillis(); for ( int i = 0 ; i < 100000 ; i++) { String result = one.set( "spn" + i, "n" + i); } long end = System.currentTimeMillis(); pool.returnResource(one); System.out.println( "Simple@Pool SET: " + ((end - start)/ 1000.0 ) + " seconds" ); pool.destroy(); } |
上面是同步方式,当然还有异步方式。
八、分布式连接池异步调用
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
@Test public void test8shardPipelinedPool() { List<JedisShardInfo> shards = Arrays.asList( new JedisShardInfo( "localhost" , 6379 ), new JedisShardInfo( "localhost" , 6380 )); ShardedJedisPool pool = new ShardedJedisPool( new JedisPoolConfig(), shards); ShardedJedis one = pool.getResource(); ShardedJedisPipeline pipeline = one.pipelined(); long start = System.currentTimeMillis(); for ( int i = 0 ; i < 100000 ; i++) { pipeline.set( "sppn" + i, "n" + i); } List<Object> results = pipeline.syncAndReturnAll(); long end = System.currentTimeMillis(); pool.returnResource(one); System.out.println( "Pipelined@Pool SET: " + ((end - start)/ 1000.0 ) + " seconds" ); pool.destroy(); } |
九、需要注意的地方
-
事务和管道都是异步模式。在事务和管道中不能同步查询结果。比如下面两个调用,都是不允许的:
12345678910111213141516171819Transaction tx = jedis.multi();
for
(
int
i =
0
; i <
100000
; i++) {
tx.set(
"t"
+ i,
"t"
+ i);
}
System.out.println(tx.get(
"t1000"
).get());
//不允许
List<Object> results = tx.exec();
…
…
Pipeline pipeline = jedis.pipelined();
long
start = System.currentTimeMillis();
for
(
int
i =
0
; i <
100000
; i++) {
pipeline.set(
"p"
+ i,
"p"
+ i);
}
System.out.println(pipeline.get(
"p1000"
).get());
//不允许
List<Object> results = pipeline.syncAndReturnAll();
-
事务和管道都是异步的,个人感觉,在管道中再进行事务调用,没有必要,不如直接进行事务模式。
-
分布式中,连接池的性能比直连的性能略好(见后续测试部分)。
-
分布式调用中不支持事务。
因为事务是在服务器端实现,而在分布式中,每批次的调用对象都可能访问不同的机器,所以,没法进行事务。
十、测试
运行上面的代码,进行测试,其结果如下:
1
2
3
4
5
6
7
8
9
10
11
|
Simple SET: 5.227 seconds Transaction SET: 0.5 seconds Pipelined SET: 0.353 seconds Pipelined transaction: 0.509 seconds Simple @Sharing SET: 5.289 seconds Pipelined @Sharing SET: 0.348 seconds Simple @Pool SET: 5.039 seconds Pipelined @Pool SET: 0.401 seconds |
另外,经测试分布式中用到的机器越多,调用会越慢。上面是2片,下面是5片:
1
2
3
4
|
Simple @Sharing SET: 5.494 seconds Pipelined @Sharing SET: 0.51 seconds Simple @Pool SET: 5.223 seconds Pipelined @Pool SET: 0.518 seconds |
下面是10片:
1
2
3
4
|
Simple @Sharing SET: 5.9 seconds Pipelined @Sharing SET: 0.794 seconds Simple @Pool SET: 5.624 seconds Pipelined @Pool SET: 0.762 seconds |
下面是100片:
1
2
3
4
|
Simple @Sharing SET: 14.055 seconds Pipelined @Sharing SET: 8.185 seconds Simple @Pool SET: 13.29 seconds Pipelined @Pool SET: 7.767 seconds |
分布式中,连接池方式调用不但线程安全外,根据上面的测试数据,也可以看出连接池比直连的效率更好。
十一、完整的测试代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
package com.example.nosqlclient; import java.util.Arrays; import java.util.List; import org.junit.AfterClass; import org.junit.BeforeClass; import org.junit.Test; import redis.clients.jedis.Jedis; import redis.clients.jedis.JedisPoolConfig; import redis.clients.jedis.JedisShardInfo; import redis.clients.jedis.Pipeline; import redis.clients.jedis.ShardedJedis; import redis.clients.jedis.ShardedJedisPipeline; import redis.clients.jedis.ShardedJedisPool; import redis.clients.jedis.Transaction; import org.junit.FixMethodOrder; import org.junit.runners.MethodSorters; @FixMethodOrder (MethodSorters.NAME_ASCENDING) public class TestJedis { private static Jedis jedis; private static ShardedJedis sharding; private static ShardedJedisPool pool; @BeforeClass public static void setUpBeforeClass() throws Exception { List<JedisShardInfo> shards = Arrays.asList( new JedisShardInfo( "localhost" , 6379 ), new JedisShardInfo( "localhost" , 6379 )); //使用相同的ip:port,仅作测试 jedis = new Jedis( "localhost" ); sharding = new ShardedJedis(shards); pool = new ShardedJedisPool( new JedisPoolConfig(), shards); } @AfterClass public static void tearDownAfterClass() throws Exception { jedis.disconnect(); sharding.disconnect(); pool.destroy(); } @Test public void test1Normal() { long start = System.currentTimeMillis(); for ( int i = 0 ; i < 100000 ; i++) { String result = jedis.set( "n" + i, "n" + i); } long end = System.currentTimeMillis(); System.out.println( "Simple SET: " + ((end - start)/ 1000.0 ) + " seconds" ); } @Test public void test2Trans() { long start = System.currentTimeMillis(); Transaction tx = jedis.multi(); for ( int i = 0 ; i < 100000 ; i++) { tx.set( "t" + i, "t" + i); } //System.out.println(tx.get("t1000").get()); List<Object> results = tx.exec(); long end = System.currentTimeMillis(); System.out.println( "Transaction SET: " + ((end - start)/ 1000.0 ) + " seconds" ); } @Test public void test3Pipelined() { Pipeline pipeline = jedis.pipelined(); long start = System.currentTimeMillis(); for ( int i = 0 ; i < 100000 ; i++) { pipeline.set( "p" + i, "p" + i); } //System.out.println(pipeline.get("p1000").get()); List<Object> results = pipeline.syncAndReturnAll(); long end = System.currentTimeMillis(); System.out.println( "Pipelined SET: " + ((end - start)/ 1000.0 ) + " seconds" ); } @Test public void test4combPipelineTrans() { long start = System.currentTimeMillis(); Pipeline pipeline = jedis.pipelined(); pipeline.multi(); for ( int i = 0 ; i < 100000 ; i++) { pipeline.set( "" + i, "" + i); } pipeline.exec(); List<Object> results = pipeline.syncAndReturnAll(); long end = System.currentTimeMillis(); System.out.println( "Pipelined transaction: " + ((end - start)/ 1000.0 ) + " seconds" ); } @Test public void test5shardNormal() { long start = System.currentTimeMillis(); for ( int i = 0 ; i < 100000 ; i++) { String result = sharding.set( "sn" + i, "n" + i); } long end = System.currentTimeMillis(); System.out.println( "Simple@Sharing SET: " + ((end - start)/ 1000.0 ) + " seconds" ); } @Test public void test6shardpipelined() { ShardedJedisPipeline pipeline = sharding.pipelined(); long start = System.currentTimeMillis(); for ( int i = 0 ; i < 100000 ; i++) { pipeline.set( "sp" + i, "p" + i); } List<Object> results = pipeline.syncAndReturnAll(); long end = System.currentTimeMillis(); System.out.println( "Pipelined@Sharing SET: " + ((end - start)/ 1000.0 ) + " seconds" ); } @Test public void test7shardSimplePool() { ShardedJedis one = pool.getResource(); long start = System.currentTimeMillis(); for ( int i = 0 ; i < 100000 ; i++) { String result = one.set( "spn" + i, "n" + i); } long end = System.currentTimeMillis(); pool.returnResource(one); System.out.println( "Simple@Pool SET: " + ((end - start)/ 1000.0 ) + " seconds" ); } @Test public void test8shardPipelinedPool() { ShardedJedis one = pool.getResource(); ShardedJedisPipeline pipeline = one.pipelined(); long start = System.currentTimeMillis(); for ( int i = 0 ; i < 100000 ; i++) { pipeline.set( "sppn" + i, "n" + i); } List<Object> results = pipeline.syncAndReturnAll(); long end = System.currentTimeMillis(); pool.returnResource(one); System.out.println( "Pipelined@Pool SET: " + ((end - start)/ 1000.0 ) + " seconds" ); } } |
参考:http://www.open-open.com/lib/view/open1410485827242.html