Lecture16_光线追踪4(Ray Tracing 4)_GAMES101 课堂笔记

上节课内容:

本节课内容:

一、蒙特卡罗积分(Monte Carlo Integration)

why : 对于一些很难写出解析式的曲线,很难求其积分。因此引入蒙特卡罗积分计算。

What & How:通过平均函数值的随机样本估计整体功能的(计算每个采样点 x 对应的函数值 f(x)(长方形的高) \(\times\) 区间长度 [a,b]。将所有的长方形面积求和再求平均——即为该积分值)。具体的理解步骤如下:

some notes:

  1. The more samples, the less variance.
  2. Sample on x, integrate on x.

二、路径追踪(Path Tracing)

(一) 路径追踪引入

why :因为对于 Whitted-Style 光线追踪有下面两个问题:

问题1 —— 总是执行镜面反射

比如上面这个“犹他茶壶”,对于左图表现为镜面反射当然没有问题;但是对于右边的磨砂材质,如果使用光线追踪依旧是按照镜面反射进行,会得到与左图同样的结果。显然是错误的。

问题2 —— 在漫反射表面停止弹射

比如,对于左图是使用光线追踪直接光照产生的效果,可以看见箱子靠墙的一面为黑色;但是对于右图中箱子靠墙的一面分别表现为红色、绿色,这就是对漫反射光线继续进行弹射(bounce)的结果(更符合现实)。

“The Cornell box” 常被用于测试全局光照。

(二)求解 Whitted-style Ray Tracing

因此,这样来看某种程度上Whitted-style Ray Tracing是错误的,但是他的渲染方程是正确的。但是它包含:

  • 需要求解一个整体的半球体积分,会有来自四面八方的光照
  • 递归问题

那么我们该如何求解这个整体的积分?

蒙特卡罗求积分

1. 详细步骤:

PDF & PMF 概念与区别:

PDF:对连续性随机变量的定义。与PMF不同的是PDF在特定点上的值并不是该点的概率, 连续随机概率事件只能求一段区域内发生事件的概率, 通过对这段区间进行积分来求。

PMF:对离散随机变量的定义。是离散随机变量 在各个特定取值的概率。

2. 一般式

(三)全局光照

对上图,主要有以下问题:

1. 路径追踪——Explosion of #rays as #bounces go up:

如果对每一条路径进行追踪,那么不断经过漫反射后计算会爆炸。示意图如下:

posted @ 2020-04-05 22:23  Someday&Li  阅读(329)  评论(0编辑  收藏  举报