C - Task Schedule
Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u
 

Description

Our geometry princess XMM has stoped her study in computational geometry to concentrate on her newly opened factory. Her factory has introduced M new machines in order to process the coming N tasks. For the i-th task, the factory has to start processing it at or after day Si, process it for Pi days, and finish the task before or at day Ei. A machine can only work on one task at a time, and each task can be processed by at most one machine at a time. However, a task can be interrupted and processed on different machines on different days. 
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help. 
 

Input

On the first line comes an integer T(T<=20), indicating the number of test cases. 

You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day. 
 

Output

For each test case, print “Case x: ” first, where x is the case number. If there exists a feasible schedule to finish all the tasks, print “Yes”, otherwise print “No”. 

Print a blank line after each test case. 
 

Sample Input

2 4 3 1 3 5 1 1 4 2 3 7 3 5 9 2 2 2 1 3 1 2 2
 

Sample Output

Case 1: Yes Case 2: Yes
 
 
题意:给n个任务和m台机器,每个任务有三个值,s e p表示这个完成这个任务需要p天,并且这p天要在s到e这段时间完成(包括s和e),任务可以中断再换台机器换一天来继续做,每台机器每天只能完成一个任务,而且一个任务每天只能给一台机器来做
 
思路:最大流。建图方法是, 把每个任务当成一个点,每个时间点也当成一个点,源点连接每个任务容量为p,每个任务连接每个时间点容量为1,每个时间点连接汇点容量为m,然后判断最大流是否和p点总和相等
 
妈蛋啊,这题卡了不少天,还以为是各种模板错了,原来所因为给每个时间点连汇点点时候for循环用i但是下面却用了j我擦擦擦卡勒那么多天,都换了几个模板来做了。。
 
AC代码:  1.白书dinic模板  2.白书ISAP模板 3.网上的dinic模板  4.网上ISAP模板
1和2跑了350ms  3跑了78ms 4跑了109ms
 
1.  359ms
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int INF = 1e9;
const double eps = 1e-6;
const int maxn = 1010;
int cas = 1;

struct Edge{
    int from,to,cap,flow;
    Edge() {}
    Edge(int a,int b,int c,int d)
    {
        from=a,to=b,cap=c,flow=d;
    }
};

struct Dinic{
    int n,m,s,t;
    vector<Edge> edges;
    vector<int> G[maxn];
    bool vis[maxn];
    int d[maxn];
    int cur[maxn];
    void AddEdge(int from,int to,int cap)
    {
        edges.push_back(Edge(from,to,cap,0));
        edges.push_back(Edge(to,from,0,0));
        m=edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }
    void init(int x)
    {
        memset(d,0,sizeof(d));
        edges.clear();
        for(int i=0;i<=x;i++)
            G[i].clear();
    }
    bool BFS()
    {
        memset(vis,0,sizeof(vis));
        queue<int> Q;
        Q.push(s);
        d[s]=0;
        vis[s]=1;
        while(!Q.empty())
        {
            int x=Q.front(); Q.pop();
            for(int i=0;i<G[x].size();i++)
            {
                Edge &e = edges[G[x][i]];
                if(!vis[e.to] && e.cap>e.flow)
                {
                    vis[e.to]=1;
                    d[e.to]=d[x]+1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }
    int DFS(int x,int a)
    {
        if(x==t || a==0) return a;
        int flow = 0, f;
        for(int &i=cur[x];i<G[x].size();i++)
        {
            Edge &e=edges[G[x][i]];
            if(d[x]+1==d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow)))>0)
            {
                e.flow += f;
                edges[G[x][i]^1].flow -= f;
                flow += f;
                a -= f;
                if(a==0) break;
            }
        }
        return flow;
    }
    int Maxflow(int s,int t)
    {
        this->s=s; this->t=t;
        int flow = 0;
        while(BFS())
        {
            memset(cur,0,sizeof(cur));
            flow+=DFS(s,INF);
        }
        return flow;
    }
};

Dinic dinic;
int n,m;
inline int id_task(int x)  {return x;}
inline int id_time(int x)  {return x+500;}
int s = 0, t = 1001;

void run()
{
    scanf("%d%d",&n,&m);
    dinic.init(1001);
    int i,j;
    int a,b,c;
    int sum=0;
    for(i=1;i<=n;i++)
    {
        scanf("%d%d%d",&c,&a,&b);
        sum+=c;
        dinic.AddEdge(s,id_task(i),c);
        for(j=a;j<=b;j++)
            dinic.AddEdge(id_task(i),id_time(j),1);
    }
    for(i=1;i<=500;i++)
        dinic.AddEdge(id_time(i),t,m);
//    printf("%d\n",dinic.Maxflow(0,500+500+1));
    printf("Case %d: %s\n\n",cas++,dinic.Maxflow(s,t)==sum?"Yes":"No");
}

int main()
{
    #ifdef LOCAL
    freopen("in","r",stdin);
    #endif
    int _;
    scanf("%d",&_);
    while(_--)
        run();
    return 0;
}
View Code

 

2.  343ms

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#define FOR(i,n) for(i=0;i<=(n);i++)
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int INF = 1e9;
const double eps = 1e-6;
const int maxn = 1010;
const int N = 1010;
int cas = 1;

struct Edge{
    int from,to,cap,flow;
    Edge() {}
    Edge(int a,int b,int c,int d)
    {
        from=a,to=b,cap=c,flow=d;
    }
};

struct ISAP{
    int n,m,s,t;
    int p[N],num[N];
    vector<Edge> edges;
    vector<int> G[N];
    bool vis[N];
    int d[N],cur[N];
    void init(int _n)
    {
        n=_n;
        int i;
        edges.clear();
        FOR(i,n)
        {
            G[i].clear();
            d[i]=INF;
        }
    }
    void AddEdge(int from,int to,int cap)
    {
        edges.push_back(Edge(from,to,cap,0));
        edges.push_back(Edge(to,from,0,0));
        m = edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }
    bool BFS()
    {
        memset(vis,0,sizeof(vis));
        queue<int> Q;
        Q.push(t);
        d[t]=0;
        vis[t]=1;
        while(!Q.empty())
        {
            int x = Q.front(); Q.pop();
            for(unsigned i=0;i<G[x].size();i++)
            {
                Edge& e = edges[G[x][i]^1];
                if(!vis[e.from] && e.cap>e.flow)
                {
                    vis[e.from]=1;
                    d[e.from] = d[x]+1;
                    Q.push(e.from);
                }
            }
        }
        return vis[s];
    }
    int Augment()
    {
        int x=t, a=INF;
        while(x!=s)
        {
            Edge& e = edges[p[x]];
            a = min(a,e.cap-e.flow);
            x = edges[p[x]].from;
        }
        x = t;
        while(x!=s)
        {
            edges[p[x]].flow+=a;
            edges[p[x]^1].flow-=a;
            x=edges[p[x]].from;
        }
        return a;
    }
    int Maxflow(int _s,int _t)
    {
        s=_s; t=_t;
        int flow = 0, i;
        BFS();
        if(d[s]>=n) return 0;
        memset(num,0,sizeof(num));
        memset(p,0,sizeof(p));
        FOR(i,n) if(d[i]<INF) num[d[i]]++;
        int x=s;
        memset(cur,0,sizeof(cur));
        while(d[s]<n)
        {
            if(x==t)
            {
                flow+=Augment();
                x=s;
            }
            int ok=0;
            for(unsigned i=cur[x];i<G[x].size();i++)
            {
                Edge& e=edges[G[x][i]];
                if(e.cap>e.flow && d[x]==d[e.to]+1)
                {
                    ok=1;
                    p[e.to]=G[x][i];
                    cur[x]=i;
                    x=e.to;
                    break;
                }
            }
            if(!ok)
            {
                int m=n-1;
                for(unsigned i=0;i<G[x].size();i++)
                {
                    Edge& e=edges[G[x][i]];
                    if(e.cap>e.flow) m=min(m,d[e.to]);
                }
                if(--num[d[x]]==0) break;
                num[d[x]=m+1]++;
                cur[x]=0;
                if(x!=s) x=edges[p[x]].from;
            }
        }
        return flow;
    }
};

ISAP dinic;
int n,m;
inline int id_task(int x)  {return x;}
inline int id_time(int x)  {return x+500;}
int s = 0, t = 1001;

void run()
{
    scanf("%d%d",&n,&m);
    dinic.init(1001);
    int i,j;
    int a,b,c;
    int sum=0;
    for(i=1;i<=n;i++)
    {
        scanf("%d%d%d",&c,&a,&b);
        sum+=c;
        dinic.AddEdge(s,id_task(i),c);
        for(j=a;j<=b;j++)
            dinic.AddEdge(id_task(i),id_time(j),1);
    }
    for(i=1;i<=500;i++)
        dinic.AddEdge(id_time(i),t,m);
//    printf("%d\n",dinic.Maxflow(0,500+500+1));
    printf("Case %d: %s\n\n",cas++,dinic.Maxflow(s,t)==sum?"Yes":"No");
}

int main()
{
    #ifdef LOCAL
    freopen("in","r",stdin);
    #endif
    int _;
    scanf("%d",&_);
    while(_--)
        run();
    return 0;
}
View Code

 

3.  78ms

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#define FOR(i,n) for(i=0;i<=(n);i++)
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int INF = 0xfffffff;
const double eps = 1e-6;
const int N = 1010;
int cas = 1;

const int maxn=1010;
const int maxm=500010;

struct edge{
    int v,next,val;
} G[maxm];

int s = 0, t = 1001;

struct Dinic{
    int pre[maxn],idx, sum;
    int N,M;
    int level[maxn];
    int gap[maxn];

    void add_edge(int from,int to,int val)
    {
        G[idx].v=to;
        G[idx].val=val;
        G[idx].next=pre[from];
        pre[from]=idx++;

        G[idx].v=from;
        G[idx].val=0;
        G[idx].next=pre[to];
        pre[to]=idx++;
    }

    int dfs(int pos,int cost, int cnt)
    {
        if (pos==t)
        {
            return cost;
        }

        int j,minh=cnt-1,lv=cost,d;

        for (j=pre[pos];j!=-1;j=G[j].next)
        {
            int v=G[j].v,val=G[j].val;
            if(val>0)
            {
                if (level[v]+1==level[pos])
                {
                    if (lv<G[j].val) d=lv;
                    else d=G[j].val;

                    d=dfs(v,d,cnt);
                    G[j].val-=d;
                    G[j^1].val+=d;
                    lv-=d;
                    if (level[s]>=cnt) return cost-lv;
                    if (lv==0) break;
                }

                if (level[v]<minh)    minh=level[v];
            }
        }

        if (lv==cost)
        {
            --gap[level[pos]];
            if (gap[level[pos]]==0) level[s]=cnt;
            level[pos]=minh+1;
            ++gap[level[pos]];
        }

        return cost-lv;

    }

    int Maxflow(int s,int t, int cnt)
    {
        int flow=0;
        gap[s]=cnt;
        while (level[s]<cnt)
        {
//            int t=dfs(s,INF,cnt);
            flow+=dfs(s,INF, cnt);
//            flow+=t;
//            cout<<flow<<endl;
        }
        return flow;
    }
    void init()
    {
        memset(pre, -1, sizeof(pre));
        memset(gap,0,sizeof(gap));
        memset(level,0,sizeof(level));
        sum = idx = 0;
    }
};

Dinic dinic;
int n,m;
inline int id_task(int x)  {return x;}
inline int id_time(int x)  {return x+500;}

void run()
{
    scanf("%d%d",&n,&m);
    dinic.init();
    int i,j;
    int a,b,c;
    int sum=0;
    for(i=1;i<=n;i++)
    {
        scanf("%d%d%d",&c,&a,&b);
        sum+=c;
        dinic.add_edge(s,id_task(i),c);
        for(j=a;j<=b;j++)
            dinic.add_edge(id_task(i),id_time(j),1);
    }
    for(i=1;i<=500;i++)
        dinic.add_edge(id_time(i),t,m);
//    printf("%d\n",dinic.Maxflow(0,500+500+1));
    printf("Case %d: %s\n\n",cas++,dinic.Maxflow(s,t,t+1)==sum?"Yes":"No");
}

int main()
{
    #ifdef LOCAL
    freopen("in","r",stdin);
    #endif
    int _;
    scanf("%d",&_);
    while(_--)
        run();
    return 0;
}
View Code

 

4.109ms

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#define FOR(i,n) for(i=0;i<=(n);i++)
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int INF = 1e9;
const double eps = 1e-6;
const int maxn = 1010;
const int N = 1010;
int cas = 1;

const int inf = 0x3fffffff;
template <int N, int M>
struct Isap
{
    int top;
    int d[N], pre[N], cur[N], gap[N];
    struct Vertex{
        int head;
    } V[N];
    struct Edge{
        int v, next;
        int c, f;
    } E[M];
    void init(){
        memset(V, -1, sizeof(V));
        top = 0;
    }
    void add_edge(int u, int v, int c){
        E[top].v = v;
        E[top].c = c;
        E[top].f = 0;
        E[top].next = V[u].head;
        V[u].head = top++;
    }
    void add(int u,int v, int c){
        add_edge(u, v, c);
        add_edge(v, u, 0);
    }
    void set_d(int t){
        queue<int> Q;
        memset(d, -1, sizeof(d));
        memset(gap, 0, sizeof(gap));
        d[t] = 0;
        Q.push(t);
        while(!Q.empty()) {
            int v = Q.front(); Q.pop();
            ++gap[d[v]];
            for(int i = V[v].head; ~i; i = E[i].next) {
                int u = E[i].v;
                if(d[u] == -1) {
                    d[u] = d[v] + 1;
                    Q.push(u);
                }
            }
        }
    }
    int sap(int s, int t, int num) {
        set_d(t);
        int ans = 0, u = s;
        int flow = inf;
        memcpy(cur, V, sizeof(V));
        while(d[s] < num) {
            int &i = cur[u];
            for(; ~i; i = E[i].next) {
                int v = E[i].v;
                if(E[i].c > E[i].f && d[u] == d[v] + 1) {
                    u = v;
                    pre[v] = i;
                    flow = min(flow, E[i].c - E[i].f);
                    if(u == t) {
                        while(u != s) {
                            int j = pre[u];
                            E[j].f += flow;
                            E[j^1].f -= flow;
                            u = E[j^1].v;
                        }
                        ans += flow;
                        flow = inf;
                    }
                    break;
                }
            }
            if(i == -1) {
                if(--gap[d[u]] == 0)
                    break;
                int dmin = num - 1;
                cur[u] = V[u].head;
                for(int j = V[u].head; ~j; j = E[j].next)
                    if(E[j].c > E[j].f)
                        dmin = min(dmin, d[E[j].v]);
                d[u] = dmin + 1;
                ++gap[d[u]];
                if(u != s)
                    u = E[pre[u] ^ 1].v;
            }
        }
        return ans;
    }
};
Isap<1010, 1000000> Sap;


//调用方式:
//Sap.init(); //建边前调用
//Sap.add(u, v, c); //在u->v之间建一条容量为c的边
//Sap.sap(s, t, num); //s为源点,t为汇点,num为边的数量

int n,m;
inline int id_task(int x)  {return x;}
inline int id_time(int x)  {return x+500;}
int s = 0, t = 1001;

void run()
{
    scanf("%d%d",&n,&m);
    Sap.init();
    int i,j;
    int a,b,c;
    int sum=0;
    for(i=1;i<=n;i++)
    {
        scanf("%d%d%d",&c,&a,&b);
        sum+=c;
        Sap.add(s,id_task(i),c);
        for(j=a;j<=b;j++)
            Sap.add(id_task(i),id_time(j),1);
    }
    for(i=1;i<=500;i++)
        Sap.add(id_time(i),t,m);
//    printf("%d\n",Sap.sap(s,t,t+100));
    printf("Case %d: %s\n\n",cas++,Sap.sap(s,t,t+1)==sum?"Yes":"No");
}

int main()
{
    #ifdef LOCAL
    freopen("in","r",stdin);
    #endif
    int _;
    scanf("%d",&_);
    while(_--)
        run();
    return 0;
}
View Code

 

 
 
 
 
 
 posted on 2014-09-23 14:04  someblue  阅读(258)  评论(0编辑  收藏  举报