LeetCode188 买卖股票的最佳时机 IV(dp)
对于第 \(i\) 只股票,可以进行的操作为作为第 \(j\) 只买入或卖出的股票
\(buy[i][j]\) 表示对于前 \(i\) 只股票,第 \(j\) 次买入股票之后的最大收益
\(sell[i][j]\) 表示对于前 \(i\) 只股票,第 \(j\) 次卖出股票之后的最大收益
第 \(j\) 次买入股票必须在第 \(j - 1\) 次卖出股票之后发生
这里可以使用滚动数组,优化空间复杂度
class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
if len(prices) == 0: return 0
if k == 0: return 0
buy, sell, l = [-prices[0]] * k, [0] * k, len(prices)
for i in range(1, l):
for j in range(k):
if j == 0:
buy[j] = max(buy[j], -prices[i])
sell[j] = max(sell[j], prices[i] + buy[j])
else:
buy[j] = max(buy[j], sell[j - 1] - prices[i])
sell[j] = max(sell[j], prices[i] + buy[j])
return sell[k - 1]
class Solution {
public:
int maxProfit(int k, vector<int>& prices) {
if (prices.empty()) return 0;
if (k == 0) return 0;
int n = prices.size();
vector<int> buy(k);
vector<int> sell(k);
for (int i = 0; i < k; ++i) {
buy[i] = -prices[0], sell[i] = 0;
}
for (int i = 1; i < n; ++i) {
for (int j = 0; j < k; ++j) {
if (j == 0) {
buy[j] = max(buy[j], -prices[i]);
sell[j] = max(sell[j], buy[j] + prices[i]);
} else {
buy[j] = max(buy[j], sell[j - 1] - prices[i]);
sell[j] = max(sell[j], buy[j] + prices[i]);
}
}
}
return sell[k - 1];
}
};