洛谷P1441 砝码称重(搜索,dfs+dp)
\(n\) 的范围为 \(n \le 20\) ,\(m\) 的范围为 \(m \le 4\) 。
暴力遍历每一种砝码去除情况,共有 \(n^m\) 种情况。
对于剩余砝码求解可以组合的重量种类数。简单dp求解。复杂度为 \(O(n\times n\times m)\) 。
时间复杂度为 \(O(n^m \times n\times n \times m)\) 。实际复杂度应该比这个小很多,剪枝效果明显。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int maxn = 25;
const int maxm = 2005;
int n, m, ans, sum;
int vis[maxn], a[maxn], f[maxm];
void solve()
{
for(int i = 0; i <= sum; i++) f[i] = 0;
f[0] = 1;
int tot = 0, ret = 0;
for(int i = 1; i <= n; i++){
if(vis[i] == 1) continue;
for(int j = tot; j >= 0; j--){
if(f[j] == 1 && f[j + a[i]] == 0){
ret++; f[j + a[i]] = 1;
}
}
tot += a[i];
}
ans = max(ans, ret);
}
void dfs(int now, int step)
{
if(step == m + 1){
solve();
return;
}
for(int i = now; i <= n; i++){
vis[i] = 1;
dfs(i + 1, step + 1);
vis[i] = 0;
}
}
int main()
{
scanf("%d%d", &n, &m);
sum = 0;
for(int i = 1; i <= n; i++){
scanf("%d", &a[i]);
sum += a[i];
}
ans = 0;
dfs(1, 1);
printf("%d\n", ans);
return 0;
}