模块

其实import加载的模块分为四个通用类别: 

1 使用python编写的代码(.py文件)

2 已被编译为共享库或DLL的C或C++扩展

3 包好一组模块的包

4 使用C编写并链接到python解释器的内置模块

#my_module.py
print('from the my_module.py')

money=1000

def read1():
    print('my_module->read1->money',money)

def read2():
    print('my_module->read2 calling read1')
    read1()

def change():
    global money
    money=0
'''
模块可以包含可执行的语句和函数的定义,这些语句的目的是初始化模块,它们只在模块名第一次遇到导入import语句时才执行(import语句是可以在程序中的任意位置使用的,且针对同一个模块很import多次,为了防止你重复导入,python的优化手段是:第一次导入后就将模块名加载到内存了,后续的import语句仅是对已经加载大内存中的模块对象增加了一次引用,不会重新执行模块内的语句)
'''
#demo.py
import my_module #只在第一次导入时才执行my_module.py内代码,此处的显式效果是只打印一次'from the my_module.py',当然其他的顶级代码也都被执行了,只不过没有显示效果.
import my_module
import my_module
import my_module

'''
执行结果:
from the my_module.py
'''
#我们可以从sys.modules中找到当前已经加载的模块,sys.modules是一个字典,内部包#含模块名与模块对象的映射,该字典决定了导入模块时是否需要重新导入。

首次导入模块my_module时会做三件事:

1.为源文件(my_module模块)创建新的名称空间,在my_module中定义的函数和方法若是使用到了global时访问的就是这个名称空间。

2.在新创建的命名空间中执行模块中包含的代码,见初始导入import my_module

3.创建名字my_module来引用该命名空间

#有两中sql模块mysql和oracle,根据用户的输入,选择不同的sql功能
#mysql.py
def sqlparse():
    print('from mysql sqlparse')
#oracle.py
def sqlparse():
    print('from oracle sqlparse')

#test.py
db_type=input('>>: ')
if db_type == 'mysql':
    import mysql as db
elif db_type == 'oracle':
    import oracle as db

db.sqlparse() 
#为已经导入的模块起别名的方式对编写可扩展的代码很有用,假设有两个模块#xmlreader.py和csvreader.py,它们都定义了函数read_data(filename):用来从文件中#读取一些数据,但采用不同的输入格式。可以编写代码来选择性地挑选读取模块
if file_format == 'xml':
     import xmlreader as reader
elif file_format == 'csv':
     import csvreader as reader
data=reader.read_date(filename)
在一行导入多个模块

import sys,os,re
from ... import...
#而from 语句相当于import,也会创建新的名称空间,但是将my_module中的名字直接导入到当前的名称空间中,在当前名称空间中,直接使用名字就可以。
from my_module import read1,read2

#demo.py
from my_module import read1
money=1000
read1()
'''
执行结果:
from the my_module.py
spam->read1->money 1000
'''

#demo.py
from my_module import read2
def read1():
    print('==========')
read2()

'''
执行结果:
from the my_module.py
my_module->read2 calling read1
my_module->read1->money 1000
'''

#如果当前有重名read1或者read2,那么会有覆盖效果。
#demo.py
from my_module import read1
def read1():
    print('==========')
read1()
'''
执行结果:
from the my_module.py
==========
'''

我们可以通过模块的全局变量__name__来查看模块名:
当做脚本运行:
__name__ 等于'__main__'

当做模块导入:
__name__= 模块名

作用:用来控制.py文件在不同的应用场景下执行不同的逻辑
if __name__ == '__main__':

def fib(n):   
    a, b = 0, 1
    while b < n:
        print(b, end=' ')
        a, b = b, a+b
    print()

if __name__ == "__main__":
    print(__name__)
    num = input('num :')
    fib(int(num))

总结:

'''
所有的模块导入都应该尽量往上写
    内置模块
    扩展模块
    自定义模块
模块不会重复被导入 : sys.moudles
从哪儿导入模块 : sys.path
import
import 模块名
    模块名.变量名 和本文件中的变量名完全不冲突
import 模块名 as 重命名的模块名 : 提高代码的兼容性
import 模块1,模块2

from import
from 模块名 import 变量名
    直接使用 变量名 就可以完成操作
    如果本文件中有相同的变量名会发生冲突
from 模块名 import 变量名字 as 重命名变量名
from 模块名 import 变量名1,变量名2
from 模块名 import *
    将模块中的所有变量名都放到内存中
    如果本文件中有相同的变量名会发生冲突
from 模块名 import * 和 __all__ 是一对
    没有这个变量,就会导入所有的名字
    如果有all 只导入all列表中的名字
__name__
在模块中 有一个变量__name__,
当我们直接执行这个模块的时候,__name__ == '__main__'
当我们执行其他模块,
在其他模块中引用这个模块的时候,这个模块中的__name__=='模块的名字'
'''

模块搜索路径

python解释器在启动时会自动加载一些模块,可以使用sys.modules查看

在第一次导入某个模块时(比如my_module),会先检查该模块是否已经被加载到内存中(当前执行文件的名称空间对应的内存),如果有则直接引用

如果没有,解释器则会查找同名的内建模块,如果还没有找到就从sys.path给出的目录列表中依次寻找my_module.py文件。

所以总结模块的查找顺序是:内存中已经加载的模块->内置模块->sys.path路径中包含的模块

在初始化后,python程序可以修改sys.path,路径放到前面的优先于标准库被加载。

#首先制作归档文件:zip module.zip foo.py bar.py

import sys
sys.path.append('module.zip')
import foo,bar

#也可以使用zip中目录结构的具体位置
sys.path.append('module.zip/lib/python')

#windows下的路径不加r开头,会语法错误
sys.path.insert(0,r'C:\Users\Administrator\PycharmProjects\a')

至于.egg文件是由setuptools创建的包,这是按照第三方python库和扩展时使用的一种常见格式,.egg文件实际上只是添加了额外元数据(如版本号,依赖项等)的.zip文件。

需要强调的一点是:只能从.zip文件中导入.py,.pyc等文件。使用C编写的共享库和扩展块无法直接从.zip文件中加载(此时setuptools等打包系统有时能提供一种规避方法),且从.zip中加载文件不会创建.pyc或者.pyo文件,因此一定要事先创建他们,来避免加载模块是性能下降。

编译python文件

为了提高加载模块的速度,强调强调强调:提高的是加载速度而绝非运行速度。python解释器会在__pycache__目录中下缓存每个模块编译后的版本,格式为:module.version.pyc。通常会包含python的版本号。例如,在CPython3.3版本下,my_module.py模块会被缓存成__pycache__/my_module.cpython-33.pyc。这种命名规范保证了编译后的结果多版本共存。

 

Python检查源文件的修改时间与编译的版本进行对比,如果过期就需要重新编译。这是完全自动的过程。并且编译的模块是平台独立的,所以相同的库可以在不同的架构的系统之间共享,即pyc使一种跨平台的字节码,类似于JAVA火.NET,是由python虚拟机来执行的,但是pyc的内容跟python的版本相关,不同的版本编译后的pyc文件不同,2.5编译的pyc文件不能到3.5上执行,并且pyc文件是可以反编译的,因而它的出现仅仅是用来提升模块的加载速度的。

 

python解释器在以下两种情况下不检测缓存
  1 如果是在命令行中被直接导入模块,则按照这种方式,每次导入都会重新编译,并且不会存储编译后的结果(python3.3以前的版本应该是这样)

  2 如果源文件不存在,那么缓存的结果也不会被使用,如果想在没有源文件的情况下来使用编译后的结果,则编译后的结果必须在源目录下 

提示:

1.模块名区分大小写,foo.py与FOO.py代表的是两个模块

2.你可以使用-O或者-OO转换python命令来减少编译模块的大小

3.在速度上从.pyc文件中读指令来执行不会比从.py文件中读指令执行更快,只有在模块被加载时,.pyc文件才是更快的

4.只有使用import语句是才将文件自动编译为.pyc文件,在命令行或标准输入中指定运行脚本则不会生成这类文件,因而我们可以使用compieall模块为一个目录中的所有模块创建.pyc文件

模块可以作为一个脚本(使用python -m compileall)编译Python源
 
python -m compileall /module_directory 递归着编译
如果使用python -O -m compileall /module_directory -l则只一层
 
命令行里使用compile()函数时,自动使用python -O -m compileall
 
详见:https://docs.python.org/3/library/compileall.html#module-compileall

序列化模块

什么叫序列化——将原本数据类型转换成一个字符串的过程就叫做序列化

序列就是字符串。

序列化的目的:

1、以某种存储形式使自定义对象持久化
2、将对象从一个地方传递到另一个地方。
3、使程序更具维护性。
数据类型 ----->  str   就是序列
str   ------> 数据类型 就是反序列

json,pickle

Json模块和pickle模块都提供了四个功能:dumps、dump、loads、load
import json
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = json.dumps(dic)  #序列化:将一个字典转换成一个字符串
print(type(str_dic),str_dic)  #<class 'str'> {"k3": "v3", "k1": "v1", "k2": "v2"}
#注意,json转换完的字符串类型的字典中的字符串是由""表示的

dic2 = json.loads(str_dic)  #反序列化:将一个字符串格式的字典转换成一个字典
#注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示
print(type(dic2),dic2)  #<class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'}


list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}]
str_dic = json.dumps(list_dic) #也可以处理嵌套的数据类型 
print(type(str_dic),str_dic) #<class 'str'> [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}]
list_dic2 = json.loads(str_dic)
print(type(list_dic2),list_dic2) #<class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}]
import json
f = open('json_file','w')
dic = {'k1':'v1','k2':'v2','k3':'v3'}
json.dump(dic,f)  #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件
f.close()

f = open('json_file')
dic2 = json.load(f)  #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回
f.close()
print(type(dic2),dic2)
import json
f = open('file','w')
json.dump({'国籍':'中国'},f)
ret = json.dumps({'国籍':'中国'})           #如果ensure_ascii为False就输出中文
f.write(ret+'\n')
json.dump({'国籍':'美国'},f,ensure_ascii=False)
ret = json.dumps({'国籍':'美国'},ensure_ascii=False)
f.write(ret+'\n')
f.close()

json & pickle 模块

用于序列化的两个模块

 

  • json,用于字符串 和 python数据类型间进行转换
  • pickle,用于python特有的类型 和 python的数据类型间进行转换

 

pickle模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load  (不仅可以序列化字典,列表...可以把python中任意的数据类型序列化

import pickle
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = pickle.dumps(dic)
print(str_dic)  #一串二进制内容

dic2 = pickle.loads(str_dic)
print(dic2)    #字典

import time
struct_time  = time.localtime(1000000000)
print(struct_time)
f = open('pickle_file','wb')
pickle.dump(struct_time,f)
f.close()

f = open('pickle_file','rb')
struct_time2 = pickle.load(f)
print(struct_time2.tm_year)

如果出于某种原因你不得不序列化其他的数据类型,而未来还会用python对这个数据进行反序列化的话,那么就可以使用pickle

shelve

shelve也是python提供给我们的序列化工具,比pickle用起来更简单一些。
shelve只提供给我们一个open方法,是用key来访问的,使用起来和字典类似。

import shelve
f = shelve.open('shelve_file')
f['key'] = {'int':10, 'float':9.5, 'string':'Sample data'}  #直接对文件句柄操作,就可以存入数据
f.close()

import shelve
f1 = shelve.open('shelve_file')
existing = f1['key']  #取出数据的时候也只需要直接用key获取即可,但是如果key不存在会报错
f1.close()
print(existing)

这个模块有个限制,它不支持多个应用同一时间往同一个DB进行写操作。所以当我们知道我们的应用如果只进行读操作,我们可以让shelve通过只读方式打开DB

import shelve            #只读模式
f = shelve.open('shelve_file', flag='r')
existing = f['key']
f.close()
print(existing)

由于shelve在默认情况下是不会记录待持久化对象的任何修改的,所以我们在shelve.open()时候需要修改默认参数,否则对象的修改不会保存。

import shelve           #设置writeback
f1 = shelve.open('shelve_file')
print(f1['key'])
f1['key']['new_value'] = 'this was not here before'
f1.close()

f2 = shelve.open('shelve_file', writeback=True)
print(f2['key'])
f2['key']['new_value'] = 'this was not here before'
f2.close()

writeback方式有优点也有缺点。优点是减少了我们出错的概率,并且让对象的持久化对用户更加的透明了;但这种方式并不是所有的情况下都需要,首先,使用writeback以后,shelf在open()的时候会增加额外的内存消耗,并且当DB在close()的时候会将缓存中的每一个对象都写入到DB,这也会带来额外的等待时间。因为shelve没有办法知道缓存中哪些对象修改了,哪些对象没有修改,因此所有的对象都会被写入。

posted on 2018-01-11 15:32  Kindergarten_Panda  阅读(193)  评论(0编辑  收藏  举报