基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真

1.程序功能描述
基于Lipschitz李式指数的随机信号特征识别和故障检测.

2.测试软件版本以及运行结果展示
MATLAB2013B版本运行

 

3.核心程序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global Signal
global Lipschitz
  
%    ߶ С   任
Ss      = 1;  
Ls      = 32;
wt      = cwt(Signal,Ss:Ls,'gaus2');
%ģ    
Max_Pos = func_WMMT(wt,10);
%  С   仯   ÿһ   Ķ Ӧ     ֵ   
[Max_List,Ptr,Lengths] = func_find_Max_nlevel(Max_Pos,10);
%    Lipschitzָ  
Lipschitz = func_cal_Lipschitz(Ptr,Max_List,wt,Lengths);
  
  
axes(handles.axes2);
for k=1:length(Ptr)
    vec = Max_List(:,Ptr(k):Ptr(k) + Lengths(k)-1);
    plot(vec(2,:),log2(vec(1,:)));
    hold on;
end
title('ģ        ');
xlabel('u');
ylabel('log2');
hold off
axes(handles.axes3);
plot(Lipschitz,'r');
axis([0,length(Lipschitz),0,10]);
title('Lipschitzָ  ');
hold off
% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton3 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
%        ָ   ļ      Թ    źż 
global Signal
global Lipschitz
  
cnt = 0;
PP  = [];
for i = 1:length(Lipschitz)
    if abs(Lipschitz(i)) >= 4
       cnt = cnt + 1;
       PP(cnt) = i;
    end
end
Len = length(Signal);
axes(handles.axes4);
if isempty(PP) == 0
    START = min(PP);
    ENDS  = max(PP);
    plot(Signal);title('   ϼ  ');
    hold on
    plot(14*START,-4:0.01:4,'r');
    hold on
    plot(Len,-4:0.01:4,'r');
else
    plot(Signal);title(' ޹   ');   
end
hold off
% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton4 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
clc;
clear;
close all;
  
  
% --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton6 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global Signal
global Lipschitz
  
KHI = func_KHI(Lipschitz);
axes(handles.axes1);
plot(KHI,'b-o');
title('KHIָ  ');
  
FGP1 = func_FGP1(Lipschitz);
axes(handles.axes3);
plot(FGP1,'b-o');
title('FGP1ָ  ');
  
  
FGP2 = func_FGP2(Lipschitz);
axes(handles.axes2);
plot(FGP2,'b-o');
title('FGP2ָ  ');
  
  
FGP3 = func_FGP3(FGP2,0.5);
axes(handles.axes4);
plot(FGP3,'b-o');
title('FGP3ָ  ');

  

 

4.本算法原理
Lipschitz李式指数(Lipschitz Exponent, LE)是一种刻画信号局部动态行为的非线性度量方法,在随机信号特征识别与故障检测领域具有重要应用价值。

4.1 Lipschitz李式指数定义与性质

 

则称该过程在T 上具有 全局Lipschitz指数 α。若上述不等式仅对某个小邻域内的时间点成立,则称X(t) 在该邻域内具有 局部Lipschitz指数 α。α 越小,表示过程变化越剧烈;α=0 表示过程可能具有瞬时突变,而 α=1 则对应线性过程。

4.2 Lipschitz李式指数的估计
对于实际观测到的随机信号,其Lipschitz指数往往未知,需要通过数据驱动的方法进行估计。常用的估计方法包括:

局部平均方法(Local Average Method, LAM):

 

分形维数方法(Fractal Dimension Method, FDM):

利用分形维数与Lipschitz指数之间的关系,可以通过计算信号的盒计数法(Box-counting Dimension, BCD)或关联积分法(Correlation Integral Method, CIM)等分形维数估计方法间接得到Lipschitz指数。例如,对于一维信号,BCD定义为:

 

其中,N(ϵ) 是覆盖信号所需的边长为ϵ 的区间数。当信号具有Hölder连续性时,其Lipschitz指数与BCD满足关系:

 

4.3 Lipschitz李式指数在信号特征识别与故障检测中的应用
特征识别:Lipschitz指数反映了信号在不同尺度上的自相似性和局部波动特性,可用于识别信号的内在结构和动态行为模式。例如,在机械振动分析中,正常运行和故障状态下的振动信号可能具有不同的Lipschitz指数,从而用于区分不同的工作状态。

故障检测:当系统发生故障时,其产生的信号往往呈现出更为剧烈的变化,表现为Lipschitz指数的显著降低。因此,监测信号的Lipschitz指数变化可以作为一种有效的故障预警指标。具体实现时,可设定一个阈值 αthreshold​,当估计的α^ 低于该阈值时触发报警:

 

此外,Lipschitz指数还可结合其他信号处理技术,如小波分析、希尔伯特黄变换等,构建多模态特征向量,进一步提高故障检测的准确性和鲁棒性。

posted @   软件算法开发  阅读(18)  评论(0编辑  收藏  举报
(评论功能已被禁用)
相关博文:
阅读排行:
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· Manus爆火,是硬核还是营销?
· 一文读懂知识蒸馏
· 终于写完轮子一部分:tcp代理 了,记录一下
点击右上角即可分享
微信分享提示