基于GA-PSO遗传粒子群混合优化算法的CVRP问题求解matlab仿真
1.程序功能描述
车辆路径问题(Vehicle Routing Problem, VRP)是运筹学领域的一个经典问题,旨在寻找满足一系列送货或取货需求的最优车辆行驶路径。其中,带容量限制的车辆路径问题(Capacitated Vehicle Routing Problem, CVRP)是最基础也是最常见的一个变种。本文将详细介绍基于GA-PSO遗传粒子群混合优化算法在求解CVRP问题中的应用。
2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
3.核心程序
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 | while gen <= Iters gen %更新 for i =1:Npop %交叉 Pops( i ,2: end -1)=func_cross(Pops( i ,2: end -1),Pbest( i ,2: end -1)); Popd( i ) = func_dist(Pops( i ,:),Mdist,Demand,Capc); %计算距离 if Popd( i ) < Pdbest( i ) Pbest( i ,:)= Pops( i ,:); Pdbest( i ) = Popd( i ); end %更新Gbest [mindis,index] = min (Pdbest); if mindis < Gdbest Gbest = Pbest(index,:); Gdbest = mindis; end %粒子与Gbest交叉 Pops( i ,2: end -1) = func_cross(Pops( i ,2: end -1),Gbest(2: end -1)); Popd( i ) = func_dist(Pops( i ,:),Mdist,Demand,Capc); if Popd( i ) < Pdbest( i ) Pbest( i ,:) = Pops( i ,:); Pdbest( i ) = Popd( i ); end %粒子变异 Pops( i ,:)=func_Mut(Pops( i ,:)); Popd( i ) = func_dist(Pops( i ,:),Mdist,Demand,Capc); if Popd( i ) < Pdbest( i ) Pbest( i ,:)= Pops( i ,:); Pdbest( i ) = Popd( i ); end %更新Gbest [mindis,index] = min (Pdbest); %最短距离 if mindis < Gdbest Gbest = Pbest(index,:); Gdbest = mindis; end end %存储此代最短距离 gbest(gen)=Gdbest; %更新迭代次数 gen=gen+1; end for i =1: length (Gbest)-1 if Gbest( i )==Gbest( i +1) Gbest( i )=0; end end Gbest(Gbest==0)=[]; Gbest=Gbest-1; p= num2str (Gbest(1)); %配送路径 for i =2: length (Gbest) p=[p, ' -> ' , num2str (Gbest( i ))]; end disp (p) Gdbest figure plot (gbest, 'LineWidth' ,2) xlim ([1 gen-1]) xlabel ( '迭代次数' ) ylabel ( '最优距离(km)' ) DrawPath(Gbest,City) 0014 |
4.本算法原理
车辆路径问题(Vehicle Routing Problem, VRP)是运筹学领域的一个经典问题,旨在寻找满足一系列送货或取货需求的最优车辆行驶路径。其中,带容量限制的车辆路径问题(Capacitated Vehicle Routing Problem, CVRP)是最基础也是最常见的一个变种。本文将详细介绍基于GA-PSO遗传粒子群混合优化算法在求解CVRP问题中的应用。
4.1 CVRP问题描述
CVRP问题可以描述为:给定一个中心仓库和一系列客户,每个客户有一定的货物需求,每辆车有最大载重量限制,要求合理安排车辆的行驶路径,使得在满足所有客户需求的前提下,总行驶距离最短。
4.2 遗传算法(Genetic Algorithm, GA)
遗传算法是一种模拟自然选择和遗传学机制的优化算法。在求解CVRP问题时,GA通过编码生成初始种群,然后通过选择、交叉和变异等操作不断迭代优化,最终找到近似最优解。
编码方式:采用自然数编码,每个客户的编号代表一个基因,一条路径则由一串基因组成。
初始种群生成:随机生成一定数量的初始路径,构成初始种群。
适应度函数:以适应度函数来衡量每个个体的优劣。在CVRP问题中,适应度函数通常取为总行驶距离的倒数。
选择操作:采用轮盘赌选择法,即根据每个个体的适应度值在总体适应度值中的比例来选择个体。
交叉操作:采用部分映射交叉(PMX)或顺序交叉(OX)等方法,生成新的个体。
变异操作:通过随机交换路径中两个客户的位置来实现变异。
4.3 粒子群优化算法(Particle Swarm Optimization, PSO)
粒子群优化算法是一种模拟鸟群觅食行为的优化算法。在求解CVRP问题时,PSO将每个解看作一个粒子,通过不断更新粒子的速度和位置来寻找最优解。
粒子表示:每个粒子表示一个可能的解,即一条路径。粒子的位置由路径中客户的排列顺序决定。
速度更新公式:根据每个粒子的历史最优位置和群体最优位置来更新粒子的速度。速度更新公式为:v[i][j] = w * v[i][j] + c1 * rand() * (pbest[i][j] - x[i][j]) + c2 * rand() * (gbest[j] - x[i][j]),其中v[i][j]表示第i个粒子在第j维上的速度,x[i][j]表示第i个粒子在第j维上的位置,pbest[i][j]表示第i个粒子在第j维上的历史最优位置,gbest[j]表示群体在第j维上的最优位置,w为惯性权重,c1和c2为学习因子,rand()为随机数生成函数。
位置更新公式:根据更新后的速度来更新粒子的位置。位置更新公式为:x[i][j] = x[i][j] + v[i][j]。需要注意的是,在更新位置时要保证新生成的路径满足CVRP问题的约束条件。
4.4 GA-PSO混合优化算法
GA-PSO混合优化算法结合了遗传算法和粒子群优化算法的优点,通过GA的全局搜索能力和PSO的局部搜索能力来提高求解CVRP问题的效率和质量。具体步骤如下:
初始化:生成初始种群,并随机初始化粒子的位置和速度。
适应度评估:计算每个个体的适应度值。
选择操作:根据适应度值选择优秀的个体进入下一代种群。
交叉操作:对选中的个体进行交叉操作,生成新的个体。
变异操作:对新生成的个体进行变异操作。
PSO优化:将新生成的个体作为粒子群中的粒子,进行速度和位置的更新操作。同时记录每个粒子的历史最优位置和群体最优位置。
终止条件判断:判断是否达到终止条件(如达到最大迭代次数或找到满足精度要求的最优解)。若满足终止条件则结束算法;否则返回步骤2继续迭代优化。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!