随机图

建树

老姚式建树(期望深度:log(n))

#include<bits/stdc++.h>
using namespace std;
int main(){
	srand(time(0));srand(rand());
	int n=100;
	printf("%d\n",n);
	for(int i=2;i<=n;i++){
		printf("%d %d\n",i,rand()%(i-1)+1);
	}
}

skyh式建树(期望深度:sqrt(n))

#include<bits/stdc++.h>
using namespace std;
const int maxn=150;
int fa[maxn];
int find_root(int x){return fa[x]==x?x:fa[x]=find_root(fa[x]);}
int main(){
	srand(time(0));srand(rand());
	int n=100,cnt=n;
	printf("%d\n",n);
	for(int i=1;i<=n;i++)fa[i]=i;
	int tot=0;
	while(cnt!=1){
		int x=rand()%n+1,y=rand()%n+1;
		if(find_root(x)==find_root(y))continue;
		fa[find_root(x)]=find_root(y);
		printf("%d %d\n",x,y);cnt--;
	}
}

建图

联通图,建树连边

#include<bits/stdc++.h>
using namespace std;
const int maxn=150;
int fa[maxn];
int find_root(int x){return fa[x]==x?x:fa[x]=find_root(fa[x]);}
int main(){
	srand(time(0));srand(rand());
	int n=100,m=300,cnt=n;
	printf("%d %d\n",n,m);
	for(int i=1;i<=n;i++)fa[i]=i;
	while(cnt!=1){
		int x=rand()%n+1,y=rand()%n+1;
		if(find_root(x)==find_root(y))continue;
		fa[find_root(x)]=find_root(y);
		printf("%d %d\n",x,y);cnt--;
	}
	for(int i=1;i<=m-n+1;i++){
		int x=rand()%n+1,y=rand()%n+1;
		while(x==y)x=rand()%n+1,y=rand()%n+1;
		printf("%d %d\n",x,y);
	}
}

DAG图

#include<bits/stdc++.h>
#define build HASH(int _nxt,int _x,int _y){nxt=_nxt,x=_x,y=_y;}
using namespace std;
const int maxn=1e5+10,mod=59999;
int n=100,m=150;//调整
int ver[maxn<<1],nxt[maxn<<1],head[maxn],tot,cntt=n;
int dfn[maxn],low[maxn],fa[maxn],sta[maxn],belong[maxn],top,cnt,num,CNT;
bool ins[maxn];
vector<int>scc[maxn];
void add(int x,int y){ver[++tot]=y,nxt[tot]=head[x],head[x]=tot;}
int find_root(int x){return fa[x]==x?x:fa[x]=find_root(fa[x]);}
void Build_Map(){
	while(cntt!=1){
		int x=rand()%n+1,y=rand()%n+1;
		if(find_root(x)==find_root(y))continue;
		fa[find_root(x)]=find_root(y);
		cntt--;
		if((rand()%2)&1)add(x,y);
		else add(y,x);
	}
	for(int i=1;i<=m-n+1;i++){
		int x=rand()%n+1,y=rand()%n+1;
		while(x==y)x=rand()%n+1,y=rand()%n+1;
		if((rand()%2)&1)add(x,y);
		else add(y,x);
	}
}
void tarjan(int x){
	dfn[x]=low[x]=++num;
	sta[++top]=x,ins[x]=1;
	for(int i=head[x];i;i=nxt[i])
		if(!dfn[ver[i]]){
			tarjan(ver[i]);
			low[x]=min(low[x],low[ver[i]]);
		}
		else if(ins[ver[i]])low[x]=min(low[x],dfn[ver[i]]);
	if(dfn[x]==low[x]){
		cnt++;int y;
		do{
			y=sta[top--],ins[y]=0;
			belong[y]=cnt,scc[cnt].push_back(y);
		}while(x!=y);
	}
}
struct EDGE{
	int x,y;
	EDGE(){}
	EDGE(int _x,int _y){x=_x,y=_y;}
}edge[maxn<<1];
int head_ha[maxn],hac;
struct HASH{int nxt,x,y;HASH(){};build;}Hash[maxn<<1];
void hash_add(int x,int y){
	int ha=(x*maxn+y)%mod;
	Hash[++hac]=HASH(head_ha[ha],x,y);
	head_ha[ha]=hac;
}
bool find(int x,int y){
	int ha=(x*maxn+y)%mod;
	for(int i=head_ha[ha];i;i=Hash[i].nxt)
		if(Hash[i].x==x&&Hash[i].y==y)
			return 1;
	return 0;
}
int main(){
	srand(time(0));srand(rand());
	for(int i=1;i<=n;i++)fa[i]=i;
	Build_Map();
	for(int i=1;i<=n;i++)if(!dfn[i])tarjan(i);
	for(int x=1;x<=n;x++){
		for(int i=head[x];i;i=nxt[i]){
			int y=ver[i];
			if(belong[x]==belong[y])continue;
			if(find(belong[x],belong[y])==0)hash_add(belong[x],belong[y]),edge[++CNT]=EDGE(belong[x],belong[y]);
		}
	}
	printf("%d %d\n",cnt,CNT);
	for(int i=1;i<=CNT;i++)printf("%d %d\n",edge[i].x,edge[i].y);
}


洛谷

import random
list_like = lambda data: isinstance(data, tuple) or isinstance(data, list)
class Edge:
    def __init__(self, u, v, w):
        self.start, self.end, self.weight = u, v, w
    def __str__(self):
        return "{} {} {}".format(self.start, self.end, self.weight)
    @staticmethod
    def unweighted_edge(edge):
        return '{} {}'.format(edge.start,edge.end)
class Graph:
    def __init__(self, point_count, directed=False):
        self.directed, self.edges = directed, [[] for i in range(point_count + 1)]
    def to_str(self, **kwargs):
        shuffle = kwargs.get("shuffle", False)
        weighted = kwargs.get("weighted", False)
        output = str if weighted else Edge.unweighted_edge
        buf = []
        if shuffle:
            new_node_id = [i for i in range(1, len(self.edges))]
            random.shuffle(new_node_id)
            new_node_id = [0] + new_node_id
            edge_buf = []
            for edge in self.iterate_edges():
                edge_buf.append(Edge(new_node_id[edge.start], new_node_id[edge.end], edge.weight))
            random.shuffle(edge_buf)
            for edge in edge_buf:
                if not self.directed and random.randint(0, 1) == 0:
                    (edge.start, edge.end) = (edge.end, edge.start)
                buf.append(output(edge))
        else:
            for edge in self.iterate_edges():
                buf.append(output(edge))
        return "\n".join(buf)
    def print(self, **kwargs):
        print(self.to_str(**kwargs))
    def iterate_edges(self):
        for node in self.edges:
            for edge in node:
                if edge.end >= edge.start or self.directed:
                    yield edge
    def __add_edge(self, x, y, w):
        self.edges[x].append(Edge(x, y, w))
    def add_edge(self, x, y, **kwargs):
        weight = kwargs.get("weight", 1)
        self.__add_edge(x, y, weight)
        if not self.directed and x != y:
            self.__add_edge(y, x, weight)
    @staticmethod
    def chain(point_count, **kwargs):
        return Graph.tree(point_count, 1, 0, **kwargs)
    @staticmethod
    def flower(point_count, **kwargs):
        return Graph.tree(point_count, 0, 1, **kwargs)
    @staticmethod
    def tree(point_count, chain=0, flower=0, **kwargs):
        directed = kwargs.get("directed", False)
        weight_limit = kwargs.get("weight_limit", (1, 1))
        if not list_like(weight_limit):
            weight_limit = (1, weight_limit)
        weight_gen = kwargs.get("weight_gen", lambda: random.randint(weight_limit[0], weight_limit[1]))
        if not 0 <= chain <= 1 or not 0 <= flower <= 1:
            raise Exception("chain and flower must be between 0 and 1")
        if chain + flower > 1:
            raise Exception("chain plus flower must be smaller than 1")
        graph = Graph(point_count, directed)
        chain_count = int((point_count - 1) * chain)
        flower_count = int((point_count - 1) * flower)
        if chain_count > point_count - 1:
            chain_count = point_count - 1
        if chain_count + flower_count > point_count - 1:
            flower_count = point_count - 1 - chain_count
        random_count = point_count - 1 - chain_count - flower_count
        for i in range(2, chain_count + 2):
            graph.add_edge(i - 1, i, weight=weight_gen())
        for i in range(chain_count + 2, chain_count + flower_count + 2):
            graph.add_edge(1, i, weight=weight_gen())
        for i in range(point_count - random_count + 1, point_count + 1):
            u = random.randrange(1, i)
            graph.add_edge(u, i, weight=weight_gen())
        return graph
    @staticmethod
    def binary_tree(point_count, left=0, right=0, **kwargs):
        directed = kwargs.get("directed", False)
        weight_limit = kwargs.get("weight_limit", (1, 1))
        if not list_like(weight_limit):
            weight_limit = (1, weight_limit)
        weight_gen = kwargs.get(
            "weight_gen", lambda: random.randint(
                weight_limit[0], weight_limit[1]))
        if not 0 <= left <= 1 or not 0 <= right <= 1:
            raise Exception("left and right must be between 0 and 1")
        if left + right > 1:
            raise Exception("left plus right must be smaller than 1")
        can_left = set([1])
        can_right = set([1])
        graph = Graph(point_count, directed)
        for i in range(2, point_count + 1):
            edge_pos = random.random()
            node = 0
            # Left
            if edge_pos < left or left + right < edge_pos <= (1.0 - left - right) / 2:
                node = random.choice(tuple(can_left))
                can_left.remove(node)
            # Right
            elif left <= edge_pos <= left + right or (1.0 - left - right) / 2 < edge_pos < 1:
                node = random.choice(tuple(can_right))
                can_right.remove(node)
            graph.add_edge(node, i, weight=weight_gen())
            can_left.add(i)
            can_right.add(i)
        return graph

    @staticmethod
    def graph(point_count, edge_count, **kwargs):
        directed = kwargs.get("directed", False)
        self_loop = kwargs.get("self_loop", False)
        repeated_edges = kwargs.get("repeated_edges", False)
        weight_limit = kwargs.get("weight_limit", (1, 1))
        if not list_like(weight_limit):
            weight_limit = (1, weight_limit)
        weight_gen = kwargs.get(
            "weight_gen", lambda: random.randint(
                weight_limit[0], weight_limit[1]))
        graph = Graph(point_count, directed)
        used_edges = set()
        i = 0
        while i < edge_count:
            u = random.randint(1, point_count)
            v = random.randint(1, point_count)

            if (not self_loop and u == v) or (not repeated_edges and (u, v) in  used_edges):
                # Then we generate a new pair of nodes
                continue

            graph.add_edge(u, v, weight=weight_gen())

            if not repeated_edges:
                used_edges.add((u, v))
                if not directed:
                    used_edges.add((v, u))

            i += 1
        return graph

    @staticmethod
    def DAG(point_count, edge_count, **kwargs):
        if edge_count < point_count - 1:
            raise Exception("the number of edges of connected graph must more than the number of nodes - 1")

        self_loop = kwargs.get("self_loop", False) # DAG default has no loop
        repeated_edges = kwargs.get("repeated_edges", True)
        loop = kwargs.get("loop", False)
        weight_limit = kwargs.get("weight_limit", (1, 1))
        if not list_like(weight_limit):
            weight_limit = (1, weight_limit)
        weight_gen = kwargs.get(
            "weight_gen", lambda: random.randint(
                weight_limit[0], weight_limit[1]))
        
        used_edges = set()
        edge_buf = list(Graph.tree(point_count, weight_gen=weight_gen).iterate_edges())
        graph = Graph(point_count, directed=True)

        for edge in edge_buf:
            if loop and random.randint(1, 2) == 1:
                edge.start, edge.end = edge.end, edge.start
            graph.add_edge(edge.start, edge.end, weight=edge.weight)
                
            if not repeated_edges:
                used_edges.add((edge.start, edge.end))
        
        i = point_count - 1
        while i < edge_count:
            u = random.randint(1, point_count)
            v = random.randint(1, point_count)

            if not loop and u > v:
                u, v = v, u

            if (not self_loop and u == v) or (not repeated_edges and (u, v) in  used_edges):
                # Then we generate a new pair of nodes
                continue

            graph.add_edge(u, v, weight=weight_gen())

            if not repeated_edges:
                used_edges.add((u, v))

            i += 1

        return graph

    @staticmethod
    def UDAG(point_count, edge_count, **kwargs):
        if edge_count < point_count - 1: 
            raise Exception("the number of edges of connected graph must more than the number of nodes - 1")

        self_loop = kwargs.get("self_loop", True)
        repeated_edges = kwargs.get("repeated_edges", True)
        weight_limit = kwargs.get("weight_limit", (1, 1))
        if not list_like(weight_limit):
            weight_limit = (1, weight_limit)
        weight_gen = kwargs.get(
            "weight_gen", lambda: random.randint(
                weight_limit[0], weight_limit[1]))
        
        used_edges = set()
        graph = Graph.tree(point_count, weight_gen=weight_gen, directed=False)

        for edge in graph.iterate_edges():
            if not repeated_edges:
                used_edges.add((edge.start, edge.end))
                used_edges.add((edge.end, edge.start))
        
        i = point_count - 1
        while i < edge_count:
            u = random.randint(1, point_count)
            v = random.randint(1, point_count)

            if (not self_loop and u == v) or (not repeated_edges and (u, v) in  used_edges):
                # Then we generate a new pair of nodes
                continue

            graph.add_edge(u, v, weight=weight_gen())

            if not repeated_edges:
                used_edges.add((u, v))
                used_edges.add((v, u))

            i += 1

        return graph

    @staticmethod
    def hack_spfa(point_count, **kwargs):
        directed = kwargs.get("directed", False)
        extraedg = kwargs.get("extra_edge", 2)
        weight_limit = kwargs.get("weight_limit", (1, 1))
        if not list_like(weight_limit):
            weight_limit = (1, weight_limit)
        weight_gen = kwargs.get(
            "weight_gen", lambda: random.randint(
                weight_limit[0], weight_limit[1]))

        point_to_skip = point_count + 3
        graph = Graph(point_count, directed)
        if point_count % 2 == 1:
            point_to_skip = point_count / 2 + 1
        half = int(point_count / 2)

        for i in range(1, half):
            (x, y) = (i, i + 1)
            graph.add_edge(x + (x >= point_to_skip), y +
                           (y >= point_to_skip), weight=weight_gen())
            (x, y) = (i + half, i + half + 1)
            graph.add_edge(x + (x >= point_to_skip), y +
                           (y >= point_to_skip), weight=weight_gen())
        for i in range(1, half + 1):
            (x, y) = (i, i + half)
            graph.add_edge(x + (x >= point_to_skip), y +
                           (y >= point_to_skip), weight=weight_gen())

        for i in range(extraedg):
            u = random.randint(1, point_count)
            v = random.randint(1, point_count)
            graph.add_edge(u, v, weight=weight_gen())

        return graph
n = 10
m = 20
print(n, m)
Graph.graph(n, m, weight_limit=5).print(weighted=True)



posted @ 2020-10-27 17:36  sodak  阅读(175)  评论(2编辑  收藏  举报